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Abstract: This paper presents the Static Computational Optical Un-
dersampled Tracker (SCOUT), an architecture for compressive motion
tracking systems. The architecture uses compressive sensing techniques
to track moving targets at significantly higher resolution than the detector
array, allowing for low cost, low weight design and a significant reduction
in data storage and bandwidth requirements. Using two amplitude masks
and a standard focal plane array, the system captures many projections
simultaneously, avoiding the need for time-sequential measurements of
a single scene. Scenes with few moving targets on static backgrounds
have frame differences that can be reconstructed using sparse signal
reconstruction techniques in order to track moving targets. Simulations
demonstrate theoretical performance and help to inform the choice of
design parameters. We use the coherence parameter of the system ma-
trix as an efficient predictor of reconstruction error to avoid performing
computationally intensive reconstructions over the entire design space.
An experimental SCOUT system demonstrates excellent reconstruction
performance with 16X compression tracking movers on scenes with zero
and nonzero backgrounds.
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OCIS codes: (110.1758) Computational imaging; (100.4999) Pattern recognition, target track-
ing; (100.3190) Inverse problems.
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1. Introduction

Compressive sensing (CS) is a potentially powerful new approach to imaging and sensing.
Some of its demonstrated benefits include the ability to form images when only a single de-
tector element is available [1], accelerating magnetic resonance imaging (MRI) by reducing
the number of required measurements [2], and in general use less data by sampling in a com-
pressed basis. One application where reduced data volume is particularly important is large-area
persistent surveillance. Systems designed for this purpose traditionally acquire and store large
volumes of data by imaging large areas at a high resolution and framerate. However, one of the
most important capabilities of these devices is tracking moving targets, which requires com-
paratively little information. These sensors are often on airborne platforms so the data must
either be processed on the platform at high cost in size, weight, and power (SWAP), or the data
must be stored until the platform lands. We present an optical tracking architecture based on
compressive sensing techniques, which we call the Static Computational Optical Undersampled
Tracker (SCOUT), to address these challenges.

Much of the existing CS literature focuses on sampling strategies that are appealing either
for their mathematical tractability, flexibility, or optimality for certain classes of scenes. Unfor-
tunately, such sampling strategies are often difficult or impractical to implement. As a result,
experimental demonstrations of CS are often very general, but exhibit substantial practical chal-
lenges, as described in Sec. 2. For example, the single-pixel camera uses a micro-mirror array
to measure in any arbitrary basis, but must do so over many time-sequential measurements [1].
By contrast, SCOUT was developed under the constraint that measurements must be acquired
“single-shot” using a conventional focal plane array.

The SCOUT architecture, described in detail in Sec. 3, uses a defocused imaging system with
two binary amplitude masks. The focal plane array then samples at a much lower resolution
than the final reconstruction. Whereas previous compressive imaging systems have attempted
to reconstruct entire images, the current version of SCOUT only reconstructs frame-to-frame
differences. As a result, the system can acquire optically compressed tracking data and store
or transmit that data with no processing located at the sensor and minimal bandwidth require-
ments. The data can then be reconstructed offline where computation is comparatively cheap.
Section 4 describes simulations used to predict reconstruction performance and optimize the
design of such a system. Section 5 presents experimental results from a laboratory system that
demonstrates the feasibility of this approach.

We believe that the SCOUT system represents an important step toward practical optical
CS system design. The system enables parallel “single-shot” acquisition of compressed, task-
oriented data, using a fully-static architecture.
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2. Challenges in traditional optical CS architectures

We now discuss why the canonical CS imaging architecture, depicted in Fig. 1, is impractical
for motion tracking applications. A well known example of this architecture is the single pixel
camera [1], which employs a micromirror array to form the projections. Each measurement
is an integrated point-by-point multiplication of the scene locations with the micromirror array
values. A single programmable micromirror array allows the use of an arbitrary projection basis
but only allows one projection to be recorded at a single point in time.

Scene Imaging
Optics

Intermediate image
on micromirror array

Condensing
Lens

Single
Photodetector

Fig. 1. A canonical CS imaging architecture. An object is imaged onto micromirror pat-
tern, which represents a projection vector, then condensed onto a photodetector for a single
measurement. Each set of projections, created by different mirror configurations, is cap-
tured sequentially in time.

For static scenes this architecture allows an arbitrarily long exposure time (within the limit
of detector saturation) to increase the signal to noise for each measurement. However, such a
camera tends to be less practical with dynamic scenes: it needs to record all the projections
for each frame before the object moves. Increasing the rate at which projections are made is
possible, but this reduces exposure time and signal to noise ratio [3].

An alternative is the parallel architecture shown in Fig. 2. This imager uses multiple spa-
tial light modulators and detectors, but requires additional optics to split the light from the
object [4]. The complexity of the optical design scales with the number of simultaneous
measurements—capturing all M of the projections simultaneously requires using M spatial light
modulators and M detector elements.

Scene
Array of

microimaging
optics

Intermediate 
images on 

micromirrors 
or masks

Array of
condensing

lenses

Array of
photodetectors

Fig. 2. An example of a typical parallel optical CS architecture. Capturing M simultaneous
projections requires using M spatial light modulators or masks and M detector elements.
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3. The SCOUT architecture

This section motivates and introduces the SCOUT architecture, then formally defines it and
describes its design parameters. In contrast to the parallel architecture in Fig. 2, SCOUT uses
a volumetric optical component to form all of the required projections simultaneously on a
single traditional sensor array. Early examples of this architecture can be found in [5, 6]. A
related approach that uses a small number of Radon projections onto linear arrays was recently
published [7]. The SCOUT approach allows for capture of dynamic scenes while avoiding the
scaling issues of earlier parallel CS architectures. The cost of this parallelism is in the loss
of flexibility to implement arbitrary projections. Rather than fully designing the projections
themselves, we describe a process for optimizing a parameterized system and analyzing its
performance.

The performance of any compressive sensing architecture depends on the design of the sys-
tem matrix, denoted as H. The typical mathematical formulation for a compressive sensing sys-
tem is shown in Eq. (1) and represented graphically in Fig. 3. In order to adhere to this model
in an imaging context, the 2D scene and measurement arrays are lexicographically reordered
into the column vectors f and g, respectively. Thus, any M × 1 compressed measurement g is
obtained as:

g = Hf, (1)

where f represents the N × 1 scene, and H is the M×N system matrix, being M < N in order
to the system to be considered compressive. The ith column of H describes the PSF of the
ith image element, whereas the jth row of H describes the weights of each scene location’s
contribution to the jth measurement. In this way, the resulting system matrix H typically acts
as a space-variant optical system and presents a block structure, as seen in the example shown
in Fig. 4.

g H

f

=

Fig. 3. A matrix formulation describing the SCOUT system.

An effective compressive sensing system must take measurements that are both compressive
and multiplexed: the number of measurements must be fewer than the number of scene loca-
tions, and each measurement must contain information about many scene locations. In other
words, the system matrix must exhibit a many-to-few mapping from scene locations to sensor
elements. Because we are not considering temporal multiplexing, the signal must be spatially
multiplexed; this is done using structured blur. The blur is achieved by defocusing the lens so
that the PSF is broad, spanning many pixels, leading to a many-to-many mapping from scene
locations to detector pixels. Because the pixels are large relative to the ultimate reconstruction
resolution, this process is compressive. Blur alone suppresses high spatial frequencies and is
poorly conditioned for reconstruction. Therefore, high-frequency structure is imposed atop the
blur by coding the optical path with two pseudo-random binary occlusion masks that are placed
at different positions between the lens and the sensor. The separation between masks results in
strong space-variance. Collectively, these design elements result in a broad shift-variant PSF,
which is then undersampled.
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Fig. 4. Experimentally measured system response matrix for the SCOUT system described
in Sec. 5. The approximate block-Toeplitz structure is clearly evident, as is the deviation
from the Bernoulli or Gaussian ensembles typically considered in CS treatments.

Finally, a reconstruction algorithm chooses the most sparse solution to the under-determined
system. The reconstruction basis must be sparse for this choice to be correct. Frame differences
are a naturally sparse basis for video surveillance applications, where relatively few targets
of interest move on an otherwise-static background. The architecture is modeled as an entirely
linear system, so frame differences can be calculated in the measurement basis and subsequently
reconstructed in the spatial domain to show dots indicating where an object moved to and from.

Object
plane

Image
plane

Imaging
lens

Mask 2Mask 1

Low-resolution
detector array

pitch p1 pitch p2

defocus
distance dim

Fig. 5. A diagram of the SCOUT architecture. A defocused lens projects light through a pair
of binary occlusion masks onto a low-resolution sensor to capture compressive, multiplexed
measurements with a shift-variant PSF.

The shift variant PSF leads to an approximate block-Toeplitz structure for the system ma-
trix, with approximate Toeplitz structure within individual blocks due to the shifting PSF. This
circulant structure is modified by random variations corresponding to the differing projections
created by the two masks. There has been some work in the CS community to investigate sys-
tem matrices with Toeplitz and circulant structure [8–10], but there has been relatively little
investigation of the approximately block-Toeplitz structure that naturally arises in optical sys-
tems such as SCOUT. Two notable exceptions are [11, 12], which provide both theoretical and
practical evidence for the viability of CS system matrices with block-Toeplitz structure.

A diagram showing the complete SCOUT architecture is shown in Fig. 5. A lens of focal
length f is focused at infinity and placed some distance f + dim from the sensor. Two binary
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occlusion masks, m1 and m2, are placed at distances dm1 and dm2 from the sensor. Masks m1

and m2 achieve fill factors f1 and f2 using randomly-patterned occluders of pitch p1 and p2, re-
spectively. The sensor captures images at resolution rx×ry; adjacent frames are subtracted, and
frame differences are reconstructed at some higher resolution Rx ×Ry using a sparsity-favoring
reconstruction algorithm. Such algorithms require knowledge of the rxry ×RxRy system matrix
H, which is determined experimentally.

While the SCOUT architecture is well-suited for tracking applications, it does have limita-
tions which make it less useful for general imaging applications. Without sparse scene motion,
the priors used in reconstruction will lead to incorrect results. Reconstructions only show the
locations of moving objects, and the sensing platform must be stationary relative to the scene
so that frame differences are sparse. However, more sophisticated techniques could potentially
estimate platform motion and use the additional information to reconstruct the entire scene.
Despite its limitations, the architecture is well-suited for applications such as fixed-camera
wide-area surveillance where bandwidth and data volume are key concerns.

4. Simulation performance

A simulation of the SCOUT architecture was used to evaluate theoretical performance and find
values for design parameters, such as defocus distance or mask fill factor, in order to mini-
mize reconstruction errors. In this section we discuss the optical model and the reconstruction
technique used, define our tracking-specific reconstruction error metric, then explain how the
simulation informed our choice of design parameters.

4.1. Simulating a SCOUT System

The simulation uses a paraxial ray-based approach to model the light from a scene as it travels
through a lens and two masks onto the detector plane. The scene has a native resolution of
Rx ×Ry; the lens is modeled as a single thin lens with transmittance function t f and the two
masks have transmittance functions t1 and t2. The mask transmittances are 0 where the mask
is black and 0.88 where the mask is clear based on measurements. The lateral magnification of
the scene and the two masks is calculated using similar triangles.

Using the optical model, the simulation records the rx × ry PSF from each scene location in
order to obtain the system matrix H. Once H is known, we use it to simulate the low resolution
measurements, g, of the higher resolution scenes, f. Subsequent simulated measurements are
subtracted to find Δg.

Given Δg and H, the reconstruction algorithm finds an estimate, denoted Δf̂, of the original
scene’s sparse difference frames. In our simulations, we use the �1-norm minimization software
package [13], which has been shown to be an effective method for recovering sparse signals
from undersampled measurements [14].

Several assumptions are made in the simulation. The distance from the scene to the lens is
much larger than the focal length of the lens, allowing us to approximate the image plane as the
rear focal plane of the lens. We also assume that we are using a single thin lens. For now, we
treat the system as noise-free for simplicity, but readily acknowledge the important real-world
impact of noise in CS applications.

4.2. Quantifying reconstruction error

The mean squared error (MSE) is a typical choice for error metrics, however it is not suitable for
our application because it weights all errors equally. For motion tracking purposes, we classify
errors into three categories. A false positive occurs when the reconstruction shows an object
where there is none; a false negative occurs when the reconstruction fails to show an object
where one exists. When an object is being tracked but appears in a neighboring pixel from its
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true location, we call this a shift error. False negatives and false positives indicate a serious
failure in the motion tracking task, while shift errors may be less problematic.

We created a custom metric that heavily penalizes false positives and false negatives, while
assigning a lower penalty for shift errors. We define reconstruction error as

P =
|a⊗ e|

2n
where a =

⎡
⎣

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

⎤
⎦ and e = Δf−Δf̂ (2)

The error frame e is the difference between the true and reconstructed difference frames,
and n is the number of movers in the scene. The error frame is convolved with a three pixel
averaging kernel a, which reduces the penalty for one-pixel shift errors. The absolute value is
taken in order to count positive and negative errors equally, and the error is divided by 2n to
make the metric independent of the number of movers. From now on, we will refer to P from
Eq. (2) as the reconstruction error.

4.3. Identifying optimal design parameters

We can use the previously described simulation and error metric to optimize the design for per-
formance. Both simulation and experimental study demonstrates a relationship between mask
position and pitch: performance depends most sensitvely on the projected mask pitch on the
sensor. Furthermore, improved performance occurs when the masks are well-separated and
generate a highly space-variant PSF. With these observations in mind, we focus our study on
the mask pitches (p1, p2) as well as the defocus distance (dim). Even after constraining the pa-
rameter space, an exhaustive search is not feasible because reconstruction is computationally
intensive. Therefore, we also use a simpler metric calculated directly from the simulated sys-
tem matrix H that is correlated with a lower reconstruction error. This metric is based in the
coherence parameter [14], well-known in the compressive sensing community. In this case, our
coherence parameter μ is defined as the maximum absolute value of inner products between
unique columns of the measurement matrix:

μ = max|〈φφφ i,φφφ j〉|; i �= j (3)

where φφφ i and φφφ j are unique columns of H. The columns are unnormalized because their relative
magnitude is related to the physical light throughput on the given sensor pixel. This coherence
parameter provides a measure of maximum similarity between any two columns of the system
matrix. Ideally, the columns, which represent the system response to each location, are orthog-
onal, but that is not possible in an undersampled system. We chose coherence as a predictor of
system matrix performance because it describes the extent to which the system matrix deviates
from this ideal.

Notice that although system matrices with nearly pairwise orthogonal columns will result
in small coherence values, system matrices with numerically small entries can accomplish the
same. Optimizing H for minimum coherence would encourage small PSF magnitudes and drive
total system throughput down. To eliminate this effect we normalize H by the sum of the basis
vector magnitudes:

Hnormed =
H

∑M
j=1 ∑N

i=1 hi, j
(4)

where M and N are the total number of rows and columns in the system matrix. Physically,
this normalization represents division by the sum of each PSF’s light throughput. The coher-
ence of a system matrix normalized in this way cannot be biased by reducing throughput. An
unfortunate consequence of this normalization step is that mask fill factor—one of the SCOUT
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architecture’s parameters—cannot be optimized based on the coherence parameter because the
effect of different mask fill factors are normalized out during the calculation.
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Fig. 6. The coherence μ (left vertical axis - solid blue) and reconstruction error P (right
vertical axis - dashed green) plotted as a function of defocus distance dim.
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Fig. 7. The coherence μ(left vertical axis - solid blue) and the reconstruction error P (right
vertical axis - dashed green) is plotted as a function of the pitch of mask 2.

To demonstrate the effectiveness of the coherence parameter as a predictor of reconstruction
error trends, we ran several simulations with complete reconstructions in order to compare
reconstruction error to coherence. Figure 6 shows that reconstruction error and the coherence
parameter follow similar trends for different defocus distances when all other variables are held
constant. Figure 7 shows similar results for varying values of mask pitch p2.

The compressive sensing coherence parameter is also a good predictor of reconstruction error
when multiple parameters are optimized simultaneously, see Fig. 8. In this case, we consider
dim, p1, and p2. We compare a jointly optimized set of parameters based on the coherence
parameter to a set of parameters found by varying each parameter individually. Reconstruc-
tions were performed in order to compare reconstruction error for scenes with one through six
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performance of parameters chosen individually using actual reconstruction performance.
A set of parameters that leads to a maximum μ is shown in dotted green. The error bars on
each line plot represent the standard deviation of the mean.

Fig. 9. Photographs of a SCOUT implementation. (a) An optical tube contains mask m2
and the lens; mask m1 (not shown) is attached near the sensor. (b) The camera captures
images of scenes displayed on a plasma television approximately 2 meters away.
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movers. Note also that reconstruction error is much higher for a set of parameters that result in
high coherence.

Our simulations demonstrate the viability of the architecture and provide an efficient way
to optimize most architecture parameter values using the simulated system matrix coherence.
Mask throughput cannot currently be optimized because coherence is normalized by full-
system throughput. The problem of finding optimal mask throughput warrants further inves-
tigation.

5. Experimental results

This section presents an experimental demonstration of the SCOUT. We used a camera with
modified optics to capture scenes with sparse frame differences displayed on a plasma monitor.
Figure 9 shows photographs of the experimental setup. The camera’s optical path contains a
35mm lens and two random amplitude binary masks. Each mask was printed on transparencies
using a high resolution laser printer. Mask m1 has pitch p1 = 30 microns and fill factor f1 =
0.4 and is located at a distance dm1 = 14mm from the sensor. Mask m2 has pitch p2 = 500
microns and fill factor f2 = 0.2 and is located at a distance dm2 = 57mm from the sensor. These
parameters were chosen based on simulated and experimental results. The plasma monitor was
used because it provides a higher contrast compared to the traditional liquid crystal displays
(LCD). Note that even though the plasma monitor was chosen for its high contrast compared to
LCDs, the black background still produces a small amount of irradiance, which is a source of
noise in our experiment.

For our experiment, the captured image resolution rx × ry is 8× 8, while the ground-truth
and reconstructed frame differences have a resolution Rx ×Ry of 32× 32. To simulate a low-
resolution detector, the camera captures the scenes at 128× 128 sensor pixels and the images
are binned down to 8× 8 before being used in reconstruction. The system response matrix is
determined experimentally by measuring the point spread function of each scene location one
at a time, as discussed in detail in Sec. 3.

A video showing experimental results for the reconstruction of scenes that contains two dots
(movers) changing position on a black background is presented in Media 1. Frame 1 of this
video is shown in Fig. 10. The top row shows two consecutive frames of the scene and the
ground-truth difference frame, all at 32×32 resolution. The bottom row shows the difference of
corresponding 8× 8 measurement frames. Finally, the 32× 32 reconstructed difference frame
is shown at the bottom right. The reconstructed video clearly shows the two movers in the
majority of the scenes. Strong quantitative agreement with the ground-truth is achieved when
the system response matrix used in the reconstruction is scaled according to:

Hrecon =
texp

tcal
Hcal, (5)

where texp and tcal are the experiment and calibration exposure times, respectively. This scaling
accounts for the physical effect of increased photon collection (and hence photodetector counts)
as a function of increased exposure time. The resulting peaks are easily identified against back-
ground noise.

By inspecting the experimental reconstruction of the 9th difference frame (occurring at 8 sec-
onds in Media 1, and shown in Fig. 11), we note that SCOUT reconstructs the amplitude of one
or more of the mover locations at a much lower amplitude when compared to the amplitudes in
the other reconstructed difference frames. This phenomenon has been correlated to when two
locations are adjacent in the ground-truth difference scene. This is an issue that can be traced
to the system response matrix H, which is a result of either inaccurate calibrations or through
a combination of system design parameters. We are currently working on non-isomorphic cal-
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Fig. 10. (Media 1) Frame 1 of a reconstruction video of a 32× 32 scene with two movers
of equal amplitude on a black background. (a) ground-truth scene 1 (b) ground-truth scene
2 (c) ground-truth frame difference and (d) measured 8×8 frame difference, scaled so that
it is discernible (e) reconstructed 32×32 difference frame
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Fig. 11. (Media 1) Frame 9 of a reconstruction video of a 32× 32 scene with two movers
of equal amplitude on a black background. This frame shows the results when the past
and present mover locations are adjacent in the difference frame. (a) ground-truth scene 1
(b) ground-truth scene 2 (c) ground-truth frame difference and (d) measured 8× 8 frame
difference, scaled so that it is discernible (e) reconstructed 32×32 difference frame
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ibration techniques and introducing additional degrees of freedom in our architecture which
may overcome this problem.
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difference scene with a nonzero background. Scene background ©2012 Google. (a) ground-
truth scene 1 (b) ground-truth scene 2 (c) ground-truth frame difference and (d) measured
8× 8 frame difference, scaled so that it is discernible (e) reconstructed 32× 32 difference
frame

A video with the results for a single mover on a nonzero background is shown in Media 2.
Elements relating to Frame 1 of this video are shown in Fig. 12. Figure 12(a) and Fig. 12(b)
show two sequential ground-truth scenes while Fig. 12(c) shows the ground-truth difference
scene. Figure 12(d) shows the experimental measurement difference at 8×8 resolution, and the
reconstructed difference frame at 32×32 resolution is displayed in Fig. 12(e).

As seen in Fig. 12(c), with the nonzero background, the amplitude of the past and present
mover locations in the ground-truth are lower than the zero background case. Therefore there
is also less contrast in the experimental difference measurements in Fig. 12(d), which makes
this case more sensitive to noise. However, the most notable feature is the lack of quantita-
tive agreement with the ground-truth, even when the calibration matrix is scaled according to
Eq. (5). This can be traced to nonlinearities in the overall system response that result from a
nonlinear monitor “gamma” (mapping from pixel value to output brightness) and inter-pixel
interactions that effect brightness. These effects are not captured during calibration as that is
performed point-by-point (thus avoiding inter-pixel effects) and with pixels that are fully-on or
-off (thus avoiding effects from monitor gamma). Quantitative agreement was possible in the
zero background case of Figs. 10 and 11 as that also involved only a small number of fully-on or
-off locations. The lack of quantitative agreement in the nonzero background experiment there-
fore does not result from something fundamental in the SCOUT architecture or processing, but
rather from specific details of the source used for the experiment. Despite the lack of quantita-
tive agreement, qualitative agreement is excellent and the movers are clearly identifiable agains
the background in Fig. 12(e).

It is important to note that we are using a generic �1-norm minimization algorithm [13]
which is not specialized or tuned for the block-circulant system matrix structure exhibited in
the SCOUT architecture. The problem of reconstructing sparse signals from system matrices
with this particular property is not well understood, so further research could yield signifi-
cant improvements in reconstruction performance. The observed system performance with this
algorithm serves to demonstrate the architecture’s viability without the need for significant op-
timization in the reconstruction stage.
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6. Future work and conclusion

A typical parallel compressive imager would require as many encoding optical elements as
simultaneous measurements. The SCOUT architecture eliminates this scaling issue by giving
up the ability to implement arbitrary projections. Using a pair of masks at different distances
to create a block-circulant system matrix, the system makes compressive measurements and
reconstructs frame differences. The system can be optimized by adjusting system parameters
such as mask pitch and defocus distance. Simulations demonstrated the use of the compressive
sensing coherence parameter as an efficient predictor of system matrix performance to jointly
optimize these parameters. An experimental system based on the SCOUT architecture success-
fully performed compressive motion tracking on scenes with zero and nonzero backgrounds in
most instances. However, the reconstruction of difference scenes with adjacent mover locations
caused issues due to the design or calibration of the system matrix. The system showed promis-
ing results using a general �1-norm minimization algorithm and we believe that further research
on sparse reconstruction with block-circulant system matrices may decrease reconstruction er-
ror. We also believe that non-isomorphic calibration techniques and adding further degrees of
freedom in the design parameters could result in significant performance gains.
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