
PNAS  2025  Vol. 122  No. 6 e2417812122� https://doi.org/10.1073/pnas.2417812122 1 of 8

RESEARCH ARTICLE | POLITICAL SCIENCES

Estimating the legibility of international borders
Michael Kenwicka , Junghyun Limb, Skyler Cranec, Scott Wehrweinc, and Beth A. Simmonsd,1

Contributed by Beth A. Simmons; received September 2, 2024; accepted December 16, 2024; reviewed by Alex Braithwaite, Nathan Jacobs, and Kenneth Schultz

Researchers in the social sciences are interested in the consequences of institutions, 
increasingly on a global scale. Institutions that may be negotiated between states can 
have consequences at a microlevel, as local populations adjust their expectations and ulti-
mately even their behavior to take institutional rules into account. However, large-scale 
fine-grained analyses that test for the complex evidence of such institutions locally are 
rare. This article focuses on a key institution: International borders. Using computer 
vision techniques, we show that it is possible to produce a geographically specific, 
validated, and replicable way to characterize border legibility, by which we mean the 
ability to visually detect the presence of an international border in physical space. We 
develop and compare computer vision techniques to automatically estimate legibility 
scores for 627,656 imagery tiles from virtually every border in the world. We evaluate 
statistical and data-driven computer vision methods, finding that fine-tuning pretrained 
visual recognition models on a small set of human judgments allows us to produce local 
legibility scores globally that align well with human notions of legibility. Finally, we 
interpret these scores as useful approximations of states’ border orientations, a concept 
that prior literature has used to capture the visible investments states make in border 
areas to maintain jurisdictional authority territorially. We validate our measurement 
strategy using both human judgments and five nomological validation indicators.

border legibility | international institutions | computer vision

 Social scientists are eager to measure and study a wide variety of global phenomena, but 
they traditionally have had few tools to do so in any but the most labor-intensive ways. 
Computer science has mastered the visual detection of objects and physical relationships, 
but computer vision techniques have not yet been widely applied to study complex social 
phenomena on a global scale. Can computer vision techniques detect the effects of complex 
social institutions? And if so, are some institutions so universal and so consequential that 
they can be meaningfully detected around the world? Our research explores possibilities 
for bringing social science and computer vision together using the case of international 
borders. We show that computer vision techniques can shed light on the varying nature 
of international borders worldwide.

 International borders are crucial institutions that order a broad range of human activ-
ities. As such, they have the potential to impact the physical environment. Border impacts 
are often visually discernible—they can be detected and interpreted as socially and polit-
ically meaningful. We advance the concept of border legibility , by which we mean inter-
national borders that are detectable, discernible, or distinguishable from the surrounding 
landscape. Borders are sometimes legible because states have developed rules and practices 
that make them so, either by intentionally locating them along readily definable geographic 
features or by enforcing political authority in such a way that makes one territory physically 
distinct from another. Legible borders both reflect and incentivize human behavior spa-
tially. Of course, not all international borders are legible. We are motivated by asking, 
where in the world do we find evidence of meaningful spatial distinctions between states?

 This article explores border legibility using computer vision techniques. Our method-
ological aim is to capture and leverage both high and low-level visual and semantic infor-
mation found in 627,656 overhead image tiles, each of which contains a land border 
between states. Using computer vision, we seek to derive a single legibility score for each 
tile, experimenting with multiple methods. We demonstrate the validity of these scores 
by assessing their correspondence with human annotations and their ability to reproduce 
empirically plausible relationships. These estimates of legibility will ultimately provide 
researchers with a more comprehensive way to study border strength worldwide. Where 
borders are highly legible, we may be able to infer investments in state capacities oriented 
toward maintaining spatial jurisdictional distinctions. We may also be able to infer social 
obeisance to bordering authority. Acknowledging that it will never be possible to observe 
every investment states make to maintain their territorial sovereignty, we show that com-
puter vision techniques can validly be used to study border hardening around the world. 

Significance

 The article advances research 
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institutions on a global scale 
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computer vision techniques. The 
focus on international borders as 
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border hardening in much of the 
world. These data can be used to 
test specific propositions about 
international borders that 
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environmental scientists for the 
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approach we develop could be 
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a global scale in the future.

Author affiliations: aDepartment of Political Science, 
Rutgers University, New Brunswick, NJ 08901; bDepartment 
of Political Science, University of North Carolina at Chapel 
Hill, Chapel Hill, NC 27599; cDepartment of Computer 
Science, Western Washington University, Bellingham, WA 
98225; and dDepartment of Political Science and Penn 
Carey Law, University of Pennsylvania, Philadelphia, PA 
19104

Author contributions: M.K., J.L., S.W., and B.A.S. designed 
research; M.K., J.L., S.C., and S.W. performed research; M.K., 
J.L., S.C., and S.W. analyzed data; M.K. and B.A.S. secured 
funding; and M.K., S.W., and B.A.S. wrote the paper.

Reviewers: A.B., University of Arizona; N.J., Washington 
University in St. Louis; and K.S., Stanford University.

The authors declare no competing interest.

Copyright © 2025 the Author(s). Published by PNAS. 
This article is distributed under Creative Commons 
Attribution-NonCommercial-NoDerivatives License 4.0 
(CC BY-NC-ND).

Although PNAS asks authors to adhere to United Nations 
naming conventions for maps (https://www.un.org/
geospatial/mapsgeo), our policy is to publish maps as 
provided by the authors.
1To whom correspondence may be addressed. Email: 
simmons3@law.upenn.edu.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.​
2417812122/-/DCSupplemental.

Published February 3, 2025.D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
W

E
ST

E
R

N
 W

A
SH

IN
G

T
O

N
 U

N
IV

E
R

SI
T

Y
, W

IL
SO

N
 L

IB
R

A
R

Y
 S

E
R

IA
L

S 
D

E
PT

" 
on

 F
eb

ru
ar

y 
3,

 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
14

0.
16

0.
14

0.
58

.

https://orcid.org/0000-0003-1055-7251
mailto:
https://orcid.org/0000-0001-8207-713X
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.un.org/geospatial/mapsgeo
https://www.un.org/geospatial/mapsgeo
mailto:simmons3@law.upenn.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2417812122/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2417812122/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2417812122&domain=pdf&date_stamp=2025-1-30


2 of 8   https://doi.org/10.1073/pnas.2417812122� pnas.org

Theory: Borders as Institutions

 In international law and international relations, borders are insti-
tutions that define state jurisdiction spatially. Jurisdiction, in theory, 
means the authority of a state to apply its laws over a given physical 
territory. It does not of course imply a desire or capacity to do so. 
Nonetheless, political borders have the potential to give rise to nota-
ble discontinuities over what could otherwise be smooth economic, 
social, and political space. When states enforce different land use 
laws, regulate human settlements, and make public infrastructure 
investments, they potentially incentivize specific kinds of human 
behaviors and outcomes, affecting mobility ( 1 ), the character of 
local communities ( 2 ), human rights realizations ( 3 ), market rela-
tionships ( 4 ), and the natural environment ( 5 ,  6 ). Differential laws 
and regulations introduce frictions to transnational flows ( 7 ) some-
times producing spatial discontinuities in development ( 8 ). With 
the potential to “organize the concrete, localized, contextual admin-
istration of power” ( 9 ), international borders reflect state authority 
and often influence human behavior.

 Spatial distinctions can be maintained in several ways. Sometimes 
the chosen landscape of a border region itself offers clear delineations 
in space. When political leaders choose natural elements as focal 
points for making territorial divisions, borders will coincide with 
geographic features such as rivers or mountain peaks. There is noth-
ing inevitable about such borders. They may offer a physical focal 
point ( 10 ) though hardly a mandate for dividing political space. In 
the right context, however, natural features may be chosen precisely 
because they offer a degree of clarity, making jurisdictional differ-
ences easier for the state to enforce.

 More often, however, geography is indeterminate. In that case, 
some states assiduously demarcate their space to make it obvious to 
populations as well as to neighboring political entities. Such demar-
cation need not be forceful. Rather it can form a focal point or line 
to reduce jurisdictional uncertainty. For example, though most of 
the US–Canada border is not fenced, it is highly visible since by 
mutual agreement, the International Boundary Commission has 
kept the border clear of vegetation on a permanent basis for 20 feet 
on each side since 1925, even in relatively remote areas. *  Some states 
attempt to actively filter or even control transactions with heavy 
infrastructural or policing investments along parts of their borders. 
Political scientists have coined the phrase “border orientation” ( 11 ) 
to capture the intensity of visible investments states make in border 
areas to maintain jurisdictional authority territorially.

 Thus far, only a relatively small proportion of these human 
investments have been systematically detected, much less scien-
tifically measured. The reason is simple. The tools used to delin-
eate and enforce state spatial authority are many, and not always 
observable. Recent research has attempted to study the legibility 
of international borders by gathering evidence of investments 
in separation infrastructures, such as border walls and fences 
( 11         – 16 ), collecting data on connective infrastructure such as 
roads, railways, ferries, and political checkpoints ( 17 ), and quan-
tifying border enforcement using legal instruments such as visas 
and visa waivers as indicators ( 18 ,  19 ). While useful, these 
approaches share two shortcomings. First, each only partially 
measures the influence states have over their borders. Those 
focusing on physical investments typically concentrate on a lim-
ited number of features in limited areas of the border zone, but 
do not reflect less visible border technologies, such as surveil-
lance aircraft ( 20 ), drones ( 21 ), and sundry integrated digital 
technologies ( 22 ). Second, legal measures often capture de jure 
but ignore de facto rules. Clearly, authority on the books does 

not always translate into authority on the ground. Moreover, 
research in each case is often difficult to scale globally due to 
cost, resulting in a tradeoff between measuring coverage and 
granularity.

 Our approach starts with the assumption that while many state 
border control investments are not visible, evidence of their exist-
ence often will be. Local populations may well be aware of less 
visible controls, from land mines to heat sensors that disincentivize 
cross-border movements. When populations respond to these 
methods of control, there may be physical consequences etched 
into the terrain. This is because meaningful borders shape human 
decisions and activities, often with visual consequences. For exam-
ple, a study of tree loss in the 20 km zone on each side of the 
Indonesia–Malaysia border in the Borneo uplands found “loss 
rates in the Malaysian uplands were an order of magnitude higher 
than in the Indonesian Uplands” ( 23 ), a distinction driven largely 
by differences in development levels, land use provisions, and 
ecological protections on each side of the border. We assume that 
the statistically significant difference in this narrow strip of bor-
derland reflects some degree of local meaning-making about the 
international border which manifests in different harvesting rates 
in Indonesian and Malaysia, even in the relative absence of highly 
visible, traditional forms of state border control.

 The concept of border legibility, we contend, captures a range of 
processes that make state jurisdiction spatially clear to populations 
in the border region. In practice, border legibility results from an 
iterative process of state efforts to control space and the human 
response to such effort. The concept of border legibility is meant to 
capture these related processes. The idea is to capture in a single 
measure how clearly these iterative relationships are reflected in both 
the built and natural environments. Border legibility is a meaningful 
concept, precisely because it aggregates visual evidence of the relative 
permeability of international borders and the social response to that 
permeability into a single, systematic, and as we will argue, valid 
measure that can be generated globally.

 Border legibility is expected to vary tremendously, cross-nationally, 
locally, and over time. Legibility sometimes outlasts state efforts to 
maintain tight border control, which is the case in much of 
Schengen-governed Europe, where internal controls have been 
removed but some physical investments that predate market unifi-
cation remain. Legibility can be reversed, as when the border 
between the Republic of Ireland and the United Kingdom was 
demilitarized after 1997. It can also erode if not maintained, as 
would soon occur if the US–Canada International Border 
Commission were to be defunded. Legibility varies spatially. Borders 
are far harder to detect in much of Africa than in the Middle East 
( 11 ). While such differences may be widely acknowledged, they are 
difficult to characterize empirically, especially on a global scale.

 We propose an approach that seeks to infer bordering not only 
from state infrastructure or rules but from a broader variety of visible 
consequences. This approach depends on the assumption that bor-
ders are institutions that mark spatial differences by affecting human 
activity and relationships, with observable physical consequences 
( 24 ,  25 ). Our contribution is to develop a valid measure of border 
legibility that meaningfully encompasses distinctions related to 
“natural” borders such as mountains and rivers, †   but also enhances 
the measurement of human-made border orientation. Stark differ-
ences suggest “strong” borders. Indistinguishable space implies a 
political border that functions minimally, if at all.  

﻿*  International Boundary Commission, https://internationalboundarycommission.org/en/ .

﻿†  Flexibility is a key feature of our approach. Researchers not interested in legibility due to 
natural terrain features can choose to control for them or to drop them from the 
dataset.D
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Data

 To estimate legibility automatically and globally, we extract a data-
set of aerial imagery depicting all the world’s international borders 
derived from Bing Maps. While the concept  of border legibility is 
enacted and experienced on the ground at the microlevel—
inasmuch as it reflects human responses to state authority—our 
﻿measure  aggregates these interactions to a tractable unit of analysis: 
a border segment viewed aerially. Thus, the dataset contains 
627,656 256-by-256-pixel image tiles, each covering a geographic 
extent of approximately 400 m on a side. To some extent, the scale 
for each tile is arbitrary, but was chosen because it seemed like a 
reasonable compromise between a “human scale”—a range at 
which people approaching a border might be expected to observe 
its essential features—and a broader scale at which imagery pro-
vide enough context for automated analysis of the image. ‡   Border 
locations were identified by densely sampling points along the 
international borders. The Bing Maps aerial images were captured 
between 1999 and 2022, with the majority captured from 2008 
to 2017. Details of the dataset and collection protocol are described 
in ref.  26  which also provides code to reproduce collection.

 As a baseline for comparison, human legibility judgments were 
collected for a randomly selected subset of 3,000 imagery tiles. Coders 
were tasked to rate aggregate border legibility at the level of the tile. §   
They were given a definition of legibility and examples of image tiles 
with both legible and illegible borders and asked to provide a binary 
label (legible or not legible) for each tile in our dataset. ¶   A minimum 
of three coders labeled each tile, and a balanced dataset was con-
structed by selecting a subset of 2,628 tiles, exactly half of which are 
labeled legible by a majority of coders. This dataset was further split 
into training, validation, and testing sets of size 1,051, 263, and 1,314, 
respectively. The testing set is class balanced; the combined training 
and validation data are class balanced, but the split was computed 
randomly. The overall class balance in the original data is approxi-
mately 57% legible and 43% illegible.  

Methods

Although boundary (or contour) detection is a long-studied problem in com-
puter vision, it is traditionally studied in a low-level setting, primarily targeting 
the presence or absence of visible contours. While visible contours do give rise 
to legibility, we explore methods that additionally aim to capture higher-level 
visual and semantic information which can contribute to legibility. For example, 
differing architectural styles or land use may create visible contrast without a 
sharp boundary, and semantic information such as border crossings, parallel 
patrol roads, or even a lack of road crossings, might imply a border.

Our work shows that a simple transfer learning approach using pretrained 
image recognition networks performs well, indeed outperforming more compli-
cated methods from prior work (26) that we adapted to our binary (i.e., legible or 

not legible) labeling and evaluation regime. We report results using two catego-
ries of methods of measuring legibility: Region Statistics and Transfer Learning.

Region Statistics. Our Region Statistics methods are based on a segmentation 
of an image tile into three regions: a margin surrounding the border itself (B) and 
the regions on each side of the border margin (A and C). Because the locations 
of international borders are known, this segmentation is readily available. These 
methods compare statistics of image features among these three segments. The 
simplest and lowest-level features are the red, green, and blue (RGB) color values 
of each pixel. We alternatively use features extracted from different layers of a 
pretrained convolutional neural network (CNN). In this class of visual recogni-
tion models, the input image is processed using successive convolutional layers; 
features from deeper layers have been shown to contain increasingly high level 
and more semantically oriented information about the image content. We exper-
imented with features from the output of the conv1, conv2, and conv3 layers of 
a ResNeXt-101 CNN trained on ImageNet (24).

Given a dense collection of features from each of segments A, B, and C, we 
derive a single legibility score for the tile by measuring dissimilarity among these 
feature collections. We discuss two different instances of this general idea. One 
computes average pairwise feature distances, and the other compares the dis-
tributions of clustered features across segments. Each of these methods can be 
used to generate scores based on any of the input features described above (RGB 
values and each of the three CNN layers).

Our most basic measure is Pairwise Feature Distance. Given two collections of 
features F1 and F2 , we calculate the average pairwise distance as

Given feature collections FA, FB , FC from the three segments, we compute the 
average pairwise distance between each segment’s features and the features from 
both other segments.# Our legibility score is then the largest of these:

Our second Region Statistics method is Cluster Assignment Distribution. For 
this method, we begin by clustering the entire tile’s features using k-means (here, 
k = 3 ) clustering. Then, we compute the distribution of cluster assignments in 
each segment individually pA , pB , pC and compare each to the distribution of 
cluster assignments in the entire tile pABC . The legibility score is the maximum 
KL divergence of a segment with the whole-tile distribution:

Transfer Learning. Because legibility is not straightforward to define in terms of 
its visual manifestation, border legibility estimation is well suited to data-driven 
approaches that can generalize from examples. However, data limitations make 
it challenging to train sufficiently powerful fully supervised models. Given our 
training set of 1,051 labeled tiles, a natural strategy is to use transfer learning: 
take a powerful model that is pretrained on another visual recognition task and 
adapt it to our task by fine-tuning on our small training set. We evaluated three 
transfer learning strategies, two of which fine-tune popular off-the-shelf image 
recognition models, and a third which fine-tunes an adaptation of the BorderCut 
method proposed by Ortega et al. (26)

To fine-tune off-the-shelf models, we begin with a model pretrained on 
ImageNet (24). As a proxy for ground truth legibility scores, we fine-tune the 
model to predict the fraction of human annotators that labeled a tile as legible. 
We remove and replace the final linear layer with a newly initialized linear layer 
that predicts a single scalar, whose output is interpreted as a legibility score. The 
last layer’s output is passed through a Sigmoid to restrict it to the range [0, 1] 
and the model is trained using Binary Cross-Entropy loss. We followed this pro-
tocol with two popular deep neural network architectures for visual recognition: 
a ResNet-18 CNN (27) and a ViT-Base/16 vision transformer (28).

D
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1
||F1||||F2||

∑
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)
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(
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)
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(
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.

Lcluster = max
S ∈ A,B,C

DKL
(
pS||pABC

)
.

﻿‡  For example, if tiles are much smaller, they would more often fail to pick up the banks of a 
major river, making the border appear “smooth” and illegible. If tiles are much larger, they 
would contain far too much visual noise. While researchers may want to choose a different 
scale depending on their theoretical purposes, we find that 400 m strikes an acceptable 
balance between tasks of on the ground human cognition and automated analysis.
§While top–down tile level legibility is obviously different than that of an individual 
approaching an international border at ground level, we submit that tile level judgments 
appropriately capture the aggregate of the iterative processes implied between state effort 
and human response discussed above, at least in areas with some state infrastructure and 
containing notable populations.
¶Note that this method yields a similar score of “0” for cases that may have been produced 
by very different processes. Our method does not tell us why the border is not legible—
whether due to a positive political decision about integration a la Schengen—or whether 
there is a true incapacity of the state to any exert meaningful control (perhaps in the 
Darien Gap, a remote, roadless area that connects Central and South America). In earlier 
iterations of our analyses, we explored classification strategies which asked human coders 
to treat legibility as a continuous trait. We transitioned to a dichotomous measure given the 
existence of a lower bound (once a border is fully illegible, it cannot become more so) and 
because coders sometimes struggled to ascertain gradations in different types of legibility 
(e.g., whether a river is more legible than a border fence).

﻿#  We found that cosine distance  d
(
f , g

)
= 1 −

f

∥ f ∥
⋅

g

∥ g ∥
    performed best among possible 
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BorderCut (26) uses a Siamese neural network that takes two tiles as input and 
predicts which tile is the more legible one. The model is trained on synthetic train-
ing pairs derived from real tiles in our border imagery dataset. The training pairs 
are constructed by substituting content into image segments A, B, and/or C such 
that one tile is known (or highly likely) to be more visually legible than the other. 
During training, we randomly select between two styles of augmented pairs:

1.	 Image 1 is an original tile; Image 2 is the original tile, but with one segment 
(A, B, or C) replaced by image content from another randomly chosen tile.

2.	 Images 1 and 2 both have segment A or C replaced with content from the 
same randomly selected other tile; Image 2 also has segment B replaced with 
content from a second (distinct) randomly chosen tile.

Mechanically, this augmentation resembles CutMix (29), although rather than 
using cut-and-paste augmentations as a regularization strategy for supervised 

learning, we apply this idea in a setting more akin to contrastive learning (30), 
where ground truth is not available. We take advantage of the specifics of the 
legibility task by assuming that Image 2 is likely to be more legible than Image 
1 because it has more content from unrelated images mixed in.

The above augmentations create very sharp boundaries in the modified tiles, 
which has the potential to reduce the task to edge detection. To make the pre-
training task more challenging and improve its relevance to the real legibility 
estimation task, we apply several augmentations to the images after compositing, 
including blur, color shift, and horizontal and vertical flipping (SI Appendix).

The network architecture used for the pretraining task is a Siamese model with 
a ResNet-18 backbone. After passing through the shared-weight backbone, the 
two images’ feature vectors are concatenated and passed through 2 additional 
linear layers to produce a two dimensional softmaxed probability of each tile 
being the more legible one. To minimize changes to the architecture and reuse 
as many pretrained weights as possible in the fine-tuning stage, we found that 

Table  1.   Quantitative measures of the accuracy of different legibility estimation methods. We include binary 
classification metrics [AUC, the area under the receiver operator characteristic (ROC) curve; Acc, classification 
accuracy] and regression metrics (PCC, Pearson correlation coefficient; and RMSE, root mean squared error). The 
best score on each metric is displayed in bold

RGB Conv1 Conv2 Conv3 BorderCut ResNet+1 ViT

 AUC ↑ Pairwise
Cluster

  0.723
 0.691 

  0.536
 0.737 

  0.659
 0.680 

  0.754
 0.675  0.874  0.883 ﻿0.910﻿

 Acc ↑ Pairwise
Cluster

  0.661
 0.630 

  0.520
 0.665 

  0.610
 0.632 

  0.639
 0.590  0.792  0.818 ﻿0.825﻿

 PCC ↑ Pairwise
Cluster

  0.351
 0.181 

  0.116
 0.280 

  0.266
 0.205 

  0.466
 0.215  0.666  0.713 ﻿0.720﻿

 RMSE ↓ Pairwise
Cluster

  0.534
 – 

  0.528
 – 

  0.498
 – 

  0.468
 –  0.376 ﻿0.340﻿  0.358

Note: Arrows indicate direction of better fit. Classification accuracy for Region Statistics methods (Pairwise and Cluster) is computed by thresholding scores on a value that maximizes 
accuracy on the validation set. Because their outputs are probabilities in the range [0,1], BorderCut and Transfer Learning approaches use a threshold of 0.5.

Table 2.   Evidence of nomological validity

Dependent variable:

Border Legibility (ViT)

(1) (2) (3) (4) (5) (6) (7)

 Terrain ruggedness  −0.001  −0.014*﻿  −0.025***﻿  −0.004**﻿  −0.001*﻿  −0.0001  0.0002
 (0.007)  (0.007)  (0.009)  (0.001)  (0.001)  (0.0004)  (0.001)

 River (binary)  0.269***﻿  0.246***﻿  0.226***﻿  0.052***﻿  0.043***﻿  0.043***﻿  0.052***﻿
 (0.016)  (0.016)  (0.016)  (0.005)  (0.004)  (0.004)  (0.005)

 Wall (binary) ﻿  0.249***﻿  0.174***﻿  0.059***﻿  0.053***﻿  0.053***﻿  0.058***﻿
﻿  (0.035)  (0.036)  (0.014)  (0.013)  (0.013)  (0.013)

 log distance to border crossing ﻿  −0.035***﻿  −0.025***﻿  −0.004***﻿  −0.003***﻿  −0.002***﻿  −0.003***﻿
﻿  (0.008)  (0.007)  (0.001)  (0.001)  (0.0004)  (0.001)

 log distance to police ﻿  −0.062***﻿  −0.056***﻿  −0.008***﻿  −0.004***﻿  −0.001  0.001
﻿  (0.009)  (0.008)  (0.001)  (0.001)  (0.001)  (0.001)

 Border orientation ﻿ ﻿  0.086***﻿  0.012***﻿  0.006***﻿  0.001  −0.001
﻿ ﻿  (0.014)  (0.002)  (0.001)  (0.001)  (0.001)

 Neighborhood legibility avg. (1 km) ﻿ ﻿ ﻿  0.837***﻿ ﻿ ﻿ ﻿
﻿ ﻿ ﻿  (0.008) ﻿ ﻿ ﻿

 Neighborhood legibility avg. (2 km) ﻿ ﻿ ﻿ ﻿  0.910***﻿ ﻿ ﻿
﻿ ﻿ ﻿ ﻿  (0.005) ﻿ ﻿

 Neighborhood legibility avg. (5 km) ﻿ ﻿ ﻿ ﻿ ﻿  0.961***﻿ ﻿
﻿ ﻿ ﻿ ﻿ ﻿  (0.004) ﻿

 Neighborhood legibility avg. (10 km) ﻿ ﻿ ﻿ ﻿ ﻿ ﻿  0.977***﻿
﻿ ﻿ ﻿ ﻿ ﻿ ﻿  (0.004)

 Observations  626,712  626,712  510,473  510,457  510,469  510,472  510,473

 R2﻿  0.056  0.130  0.124  0.504  0.503  0.481  0.455

Note: The table reports coefficients from OLS regression models of border legibility. SE are reported in parentheses and clustered by border dyad. *P < 0.1; **P < 0.05; ***P < 0.01.D
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it worked best to pass a single tile into the model as both Image 1 and Image 2. 
Finally, we replace the final layer and fine-tune the model using the same protocol 
as for the off-the-shelf models.

Validation

 In total, the methods listed above generate 11 unique strategies for 
generating legibility scores. We perform two complementary anal-
yses to determine which, if any of these produces a valid measure 
that meaningfully captures concept of border legibility. The first 
assesses the validity of the scoring process through a predictive anal-
ysis of how well each of the competing strategies map on to the 
annotations of human coders that labeled images using our opera-
tional criteria. The second takes the scores from the top-performing 
measure and assesses nomological validity to determine whether 
they can be used to reproduce empirical relationships that one 
would expect to obtain if the measurement process adequately cap-
tures the higher-order concept of legibility. 

Predictive Validation against Human Coded Labels. Predictive 
validity was assessed against the held-out test set of 1,314 human-
annotated tiles. The legibility scores generated through each 
method are used to predict the average annotation with a range 
between zero and one. Predictive performance metrics reported in 
Table 1 include the area under the receiver operating characteristic 
curve (AUC), the binary classification accuracy (Acc), Pearson 
correlation coefficient, and RMS error.

 The transfer learning approaches solidly outperform the meth-
ods based on region statistics. Notably, the off-the-shelf fine-tuned 
models ResNet-18 and ViT both outperform the more task-tailored 
BorderCut method. We hypothesize that this is partly because the 
off-the-shelf models require less adaptation than the BorderCut 
method, and therefore they perform better given the very limited 
training set size. Interestingly, one of the top few region statistics 
methods, Pairwise-RGB, is arguably the simplest. Overall, how-
ever, we assume the ViT-produced scores are the most promising 
and subject this approach to further scrutiny.  

Nomological Validation. Nomological validation analyses begin 
with the assumption that the concept of interest shares predictable, 
meaningful relationships with other distinct concepts, and infers 
evidence of validity based on whether a given measurement 
strategy can reproduce those relationships (31).

 We identified five such indicators, which we expect to be 
systematically related to legibility. Four are recorded at the 
grid-cell level: the presence of a river ( 32 ); the presence of a 
border wall ( 33 ); the distance to the nearest border crossing ( 28 ); 
and the distance to the nearest police station. We assume that 
borders are more legible when they are marked by a river or 
border wall, and less legible as distance to official state structures 
like police stations and border crossings increases. For the fifth 
indicator, we include the average border orientation score of the 
two countries, which records each state’s commitment to filtering 
through the presence of physical infrastructure, especially at 
border crossings ( 34 ). Relative to previous efforts, we expect that 
our measure of legibility captures a greater variety of ways that 
border orientation can manifest, and a positive association is 
predicted. Importantly, border orientation scores ( 11 ) are 
recorded at the level of contiguous state dyads, and do not vary 
by grid cell, making this a much “harder” validation test, and 
one which assumes states with a more controlling (higher) border 
orientation will make their borders more legible in a variety of 
ways, even beyond the influence of walls and border crossings, 
which are already included as covariates.

 We also include a measure of terrain ruggedness ( 35 ) at the 
grid-cell level, although its utility for nomological validation is 
limited due to its less determinative relationship with legibility. 
On the one hand, mountain ranges can be legible when viewed 
from above and from a great distance and when borders fall along 
clear peaks or valleys. We noted this possibility to our human 
coders. On the other hand, these hard-to-reach areas are also pre-
cisely the places where states have traditionally experienced diffi-
culty exercising sovereign authority. Moreover, borders running 
along mountain peaks may be hard to discern visually from the 
relatively small geographic size of the imagery tiles.

Fig. 1.   Estimates of border legibility, globally. Note: Legibility scores range from 0 (least legible) to 1 (most legible). Legibility scores for each imagery tile are 
aggregated into a raster format, with mean scores reported.
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  Table 2  reports legibility scores regressed on the above indica-
tors. Some models additionally account for spatial nonindepend-
ence by including a covariate recording the simple average of 
legibility scores among neighboring tiles within varying distance 
thresholds. The results provide strong evidence of validity. Across 
all specifications, borders are more legible in tiles that also contain 
rivers or border walls, and in tiles located closer to border cross-
ings. The same holds for tiles that are more proximate to police 
stations, although this result is sensitive to the inclusion of the 
neighborhood average control variables. Model fit also improves 
significantly when transitioning from a model that only records 
natural geographic indicators (model 1) to those which include 
elements of the built environment (models 2 to 3), demonstrating 
that the measurement strategy succeeds in capturing evidence of 
human-produced elements of bordering associated with legibility. 
In other words, this supports the notion that legibility is produced 
by state–citizen interaction. It is also notable that legibility is lower 
in areas of rugged terrain in at least some specifications. 

 The contiguous state dyad-level measure of border orientation is 
strongly associated with more legible borders overall, even after 
controlling for structures like walls and fences from which these 
border orientation scores were originally derived, although the rela-
tionship becomes insignificant after the inclusion of neighborhood 

averages at a distance higher than 2 km. Nevertheless, the result is 
generally consistent with our assumption that states which have 
invested heavily in filtering structures also make their borders legible 
in subtler ways. Similar results are obtained using alternative spec-
ification strategies (SI Appendix, Tables S3 and S4 ).   

Results

  Fig. 1  maps the finalized border legibility scores. The estimates 
corroborate many elements of the conventional wisdom on 
border politics, but challenge others. The fact that most 
European borders are highly legible is consistent with theories 
arguing that the modern, territorial state emerged relatively 
early in this region ( 36 ). More recently, some states have made 
their borders legible through the construction of border walls, 
and several of these areas—such as the US Southern Border and 
much of the Middle East—are also identified as legible. 
Meanwhile, borders in North Africa and the Sahel are among 
the least legible in the world. While African borders are often 
assumed to be illegible, there is a notable counter-trend further 
south. Examining the most legible borders in the world 
(SI Appendix, Table S1 ) also reveals several neighbors whose 
history of hostile relations has plausibly incentivized border 

Fig. 2.   Border legibility scores and imagery tiles from the India–Pakistan border. Note: (A, B) display illustrative tiles from points (A) and (B), marked on the map 
in the Left panel. Azad Kashmir (Pakistan) and Jammu and Kashmir (India) highlighted in black. Legibility scores for each imagery tile are aggregated into a raster 
format, with mean scores reported.
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hardening, including Iraq–Kuwait; Greece–Türkiye, Germany–
Poland, Türkiye–Syria, and Egypt–Israel.        

  Fig. 2  provides a closer view of the India–Pakistan border, 
widely regarded as one of the most contentious in the world ( 37 ). 
This border is visible even from space at night, coinciding with 
the highly legible (red) segments outlined on the map. Here, the 
border is made legible both by differential patterns of land use 
(panel A) and through security structures which separate commu-
nities on each side. And yet, rival states can also frustrate each 
other’s ability to govern territorially ( 38 ,  39 ) as evidenced in the 
disputed Kashmir region. There, a combination of difficult terrain 
and especially hostile relations have made for more complex bor-
dering processes and rendered the border less legible in places 
(panel B). It is not clear that India’s border fence is complete in 
this region, which likely contributes to our finding of lower legi-
bility scores in the corresponding tiles.        

 Finally, we turn to Southeast Asia. So “ungoverned” are its upland 
areas that scholars have coined the term “Zomia” to describe bor-
derlands in the region that have historically eluded state reach ( 40 ). 
 Fig. 3  compares our legibility scores with the edges of “Zomia” 
defined by ref.  40 , uncovering significant correspondence between 
the two. ||﻿ “Zomia” includes, for example, the especially illegible 
borders between India and Burma, as well as Vietnam and Laos, 
and the western segment of the China–Vietnam border, but it ends 
along the more legible eastern half. It encompasses the less legible, 
northeastern Vietnam–Cambodia border but excludes the more 

legible southwestern portion. These results show that the measure 
is useful not only for discerning instances of state presence but also 
its notable absence.          

Conclusions

 Social scientists are increasingly searching for ways they can meas-
ure the broad impacts of complex institutions in cross-national 
context. This has been a challenging, inchoate, and time-intensive 
task. The method developed here is a promising approach for 
future research. First, the snapshot presented here is well worth 
extending in time, as data permit. Future applications might 
explore historic legibility using time-series data. Doing so would 
allow researchers to examine the intensification and diffusion of 
border hardening efforts throughout the world, and possibly to 
better understand its relationship to patterns of global migration, 
ecological challenges, and even political violence. The use of com-
puter vision could also test the hypothesis that measures of border 
permeability that depend exclusively on modern infrastructure or 
western-style legal agreements have underestimated border hard-
ening in Africa or Asia, where different kinds of barriers have gone 
undetected and therefore understudied.

 This approach to border legibility will accelerate research into 
when and where state territorial consolidation takes place. For exam-
ple, the spatial and global character of the data sheds light on the 
kinds of communities that elicit and respond to state territorial 
control. Our legibility measure can be combined with information 
on distances from state strongholds to understand the capacity and 
the incentives of states to project their authority through more 

﻿||  In general, there are only sharp distinctions between “Zomia” and illegible zones in areas 
where the border is demarcated by a river, sharp geographic features, or discernible evi-
dence of state influence (e.g., roads and land use).

Fig. 3.   Border legibility in Southeast Asia and Scott’s (40) Zomia. Note: Right panel reproduced from Scott (40, p. 16). Legibility scores for each imagery tile are 
aggregated into a raster format, with mean scores reported.
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legible international borders. Furthermore, border legibility may be 
usefully deployed alongside such measures as lights at night as an 
explanatory variable to understand spatial development patterns. 
While we focused on bordering at the international level, these 
methods could also be used to examine bordering in other contexts: 
between localities, geographically concentrated racial and ethnic 
groups, and among other nonstate entities. In these contexts, evi-
dence of border legibility might similarly reflect human-made 
attempts at maintaining intergroup distinctions and possibly ineq-
uities. In this sense, our aim has been to develop a concept and 
measurement strategy which allows for the systematic analysis of 
bordering, broadly defined and across a variety of contexts.

 Our legibility task produced nomologically valid measures consist-
ent with human judgments of border legibility. Nevertheless, we 
encourage further research that may produce even better results. For 
example, while our approach measures legibility when the location 
of the border is given, the task could potentially be redefined to assess 
legibility when the location of the border is not known. Relatedly, it 
would be interesting to develop methods to predict the probability 
that a border exists at all  in a given space. Such a task would require 
a comparison of bordered and borderless tiles and seek to determine 
which in a pairwise comparison is more likely  to contain a border. This 
comparative task might be useful where the problem is to determine 
whether a border is more legible than surrounding territory.

 Our research suggests that visual recognition techniques devel-
oped in computer science can further this research into complex 
institutional outcomes that have visual consequences. International 

borders provide one example. When they are enforced—or when 
people expect they will be enforced—social relationships respond 
in ways that, in theory, can be detected in the physical environ-
ment. The theoretical expectation is clear: “Hard” international 
borders should in principle be detectable and susceptible to 
 conversion into usable data for global social science research.    

Data, Materials, and Software Availability. All data and replication code 
are available through Harvard Dataverse (DOI: 10.7910/DVN/JHZFSM) (41) and 
GitHub (42).
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