Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Precise Event-level Prediction of Urban Crime
Reveals Signature of Enforcement Bias

Victor Rotaru
University Of Chicago

Yi Huang

University Of Chicago
Timmy Li

University Of Chicago

James Evans
University of Chicago and Santa Fe Institute https://orcid.org/0000-0001-9838-0707

Ishanu Chattopadhyay (&% ishanu@uchicago.edu)
University of Chicago

Article

Keywords: enforcement bias, urban crime, crime rate
Posted Date: February 11th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-192156/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Nature Human Behaviour on June 30th,
2022. See the published version at https://doi.org/10.1038/s41562-022-01372-0.


https://doi.org/10.21203/rs.3.rs-192156/v1
https://orcid.org/0000-0001-9838-0707
mailto:ishanu@uchicago.edu
https://doi.org/10.21203/rs.3.rs-192156/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41562-022-01372-0

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Precise Event-level Prediction of Urban Crime
Reveals Signature of Enforcement Bias

Victor Rotaru®:?, Yi Huang?, Timmy Li%:?, James Evans?®® and Ishanu Chattopadhyay,®*5*

!Department of Medicine, University of Chicago, Chicago, IL 60637, USA
2Department of Sociology, University of Chicago, Chicago, IL 60637, USA
3Department of Computer Science, University of Chicago, Chicago, IL 60637, USA
“Committee on Quantitative Methods in Social, Behavioral, and Health Sciences, University of Chicago,
Chicago, IL 60637, USA
5Committee on Genetics, Genomics & Systems Biology, University of Chicago, Chicago, IL 60637, USA
6Santa Fe Institute, Santa Fe NM 87501, USA

*To whom correspondence should be addressed: e-mail: i shanu@uchicago.edu.

Policing efforts to thwart urban crime often rely on detailed reports of criminal infractions. However,
crime rates do not document the distribution of crime in isolation, but rather its complex relationship
with policing and society. Several results attempting to predict future crime now exist, with varying
degrees of predictive efficacy. However, the very idea of predictive policing has stirred controversy,
with the algorithms being largely black boxes producing little to no insight into the social system
of crime, and its rules of organization. The issue of how enforcement interacts with, modulates, and
reinforces crime has been rarely addressed in the context of precise event predictions. In this study,
we demonstrate that while predictive tools have often been desighed to enhance state power through
surveillance, they also enable the tracing of systemic biases in urban enforcement—surveillance of
the state. We introduce a novel stochastic inference algorithm as a new forecasting approach that
learns spatio-temporal dependencies from individual event reports with demonstrated performance far
surpassing past results (e.g., average AUC of ~ 90% in the City of Chicago for property and violent
crimes predicted a week in advance within spatial tiles ~ 1000 ft across). These precise predictions enable
equally precise evaluation of inequities in law enforcement, discovering that response to increased crime
rates is biased by the socio-economic status of neighborhoods, draining policy resources to wealthy
areas with disproportionately negative impacts for the inner city, as demonstrated in Chicago and six
other major U.S. metropolitan areas. While the emergence of powerful predictive tools raise concerns
regarding the unprecedented power they place in the hands of over-zealous states in the name of civilian
protection, our approach demonstrates how sophisticated algorithms enable us to audit enforcement
biases, and hold states accountable in ways previously inconceivable.

HE emergence of large-scale data and ubiquitous data-driven modeling has sparked widespread government

interest in the possibility of predictive policing'=: predicting crime before it happens to enable anticipatory
enforcement. Such efforts, however, do not document the distribution of crime in isolation, but rather its complex
relationship with policing and society. In this study, we reconceptualize the process of crime prediction, build
novel methods to improve it, and use it to diagnose both the distribution of reported crime and biases in its
enforcement. The history of statistics has co-evolved with the history of criminal prediction, but also with the
history of enforcement critique. Siméon Poisson published the Poisson distribution and his theory of probability
in an analysis of the number of wrongful convictions in a given country®. Andrey Markov introduced Markov
processes to show that dependencies between outcomes could still obey the central limit theorem to counter
Pavel Nekrasov’'s argument that because Russian crime reports obeyed the law of large humbers, “decisions
made by criminals to commit crimes must all be independent acts of free will””.

In this study, we conceptualize the prediction of criminal reports as that of modeling and predicting a system of
spatio-temporal point processes unfolding in social context. We report a fundamentally new approach to predict
urban crime at the level of individual events, with predictive accuracy far greater than has been achieved in
past. Rather than simply increasing the power of states by predicting the when and where of anticipated crime,
our new tools allow us to audit them for enforcement biases, and garner deep insight into the nature of the
dynamical processes through which policing and crime co-evolve in urban spaces.
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Classical investigations into the mechanics of crime®'° have recently given way to event-level crime predictions
that have enticed police forces to deploy them preemptively and stage interventions targeted at lowering crime
rates. These efforts have generated multi-variate models of time-invariant hotspots ''~'3, and estimate both long
and short term dynamic risks'3. One of the earliest approaches to predictive policing is based on the use
of epidemic-type aftershock sequences (ETAS)*®, originally developed to model seismic phenomena. While
these approaches have suggested the possibility of predictive policing, many achieve only limited out-of-sample
performance*®. More recently, deep learning architectures have yielded better results'. Machine learning
systems, however, are often black boxes producing little insight regarding the social system of crime and its
rules of organization. Moreover, the issue of how enforcement interacts with, modulates and reinforces crime
has been rarely addressed in the context of precise event predictions.

RESULTS AND DISCUSSION

Here we show that urban crime may be predicted reliably one or more weeks in advance, enabling model-
based simulations that reveal both the pattern of reported infractions and the pattern of corresponding police
enforcement. We learn from recorded historical event logs, and validate on events in the following year beyond
those in the training sample. Using incidence data from the City of Chicago, our novel spatio-temporal network
inference algorithm infers patterns of past event occurrences, and constructs a communicating network (the
Granger Network) of local estimators to predict future infractions. In this study, we consider two broad categories
of reported criminal infractions: violent crimes consisting of homicides, assault, and battery, and property crimes
consisting of burglary, theft and motor-vehicle thefts. The number of individuals arrested during each recorded
event is separately modeled and allows us to investigate the possibility and pattern of enforcement bias.

We begin by processing event logs to obtain time-series of relevant events, stratified by location and discretized
by time, yielding sequential event streams for 1) violent crime (v), 2) property crime (u) and 3) number of
arrests (w), as shown in Fig. 1, panels a, b and c. To infer the structure of the Granger Net, we learn a finite
state probabilistic transducer '8 for each possible source-target pair s, and time lag A (Fig. 1d), yielding
~ 2.6 billion modeled associations. Following the notion of Granger causality ', links in the network are retained
as they predict events at the target better than the target can predict itself. More details on the on problem
characteristics and performance are provided in Tab. | and Il respectively.

For Chicago, we make predictions separately for violent and property crimes, individually within spatial tiles
roughly 1000ft¢ across and time windows of 1 day approximately a week in advance with AUCs ranging from
80 — 99% across the city. We summarize our prediction results in Fig. 2, where panels a and b illustrate the
geospatial scatter of AUC obtained for different spatial tiles and types of crime, and ¢ shows the distribution of
AUCs achieved. Out-of-sample predictive performance remains stable over time; our predictions on successive
years (each time using three preceding years for training, and one year for out-of-sample test, see Fig. 8 shows
little variation in average AUC. Inspecting excerpts of the average daily crime rate for successive years also
shows close match between actual and predicted behavior (See Fig. 9, panels a, ¢ and e.) The remaining
panels (b, d and f) in the same figure illustrate how the Fourier coefficients match up, showing that we are able
to capture periodicities at the weekly and bi-weekly scales, and beyond.

Unlike previous efforts'=°, we do not impose pre-defined spatial constraints. In contrast to contiguous diffusion
phenomena encountered in physical systems, crime may spread across the complex landscape of a modern
city unevenly, with regions hyperlinked by transportation networks, socio-demographic similarity, or historical
collocation. Rather than assuming that events far off across the city will have a weaker influence compared with
those physically near in space or time, we probe the topological structure emergent in the inferred dependencies
to estimate the shape, size and organization of neighborhoods that best predict events at each location. The
results illustrated in Fig. 2d and e show that the situation is complex with the locally predictive neighborhoods
varying widely in geometry and size, implying that restricting analysis to relatively small local communities
within the city is sub-optimal for crime prediction and enforcement analysis. In order to analyze if the effect of
reported criminal infractions diffuse outward in space and time, we simply calculate temporal-spatial distances
of influences, then average across all neighborhoods in the city, revealing the rapid decay with time delay in
diffusion rates shown in Fig. 2f. Interestingly we find the property and violent crimes differ in their rates of
influence diffusion (Fig. 2f); while the effect of property crimes decays rapidly in days, violent reported events
shape the dynamics for weeks to come.

Forecasting crime via analyzing historical patterns has been attempted before '81°. These approaches use state
of the art machine deep learning tools based on recurrent and convolutional neural networks (NN). In the first
article'®, the authors train a NN model to predict next-day events for 60,348 sample points in Chicago. The
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Fig. 1. Crime Data & Modeling Approach. a and b show the recorded infractions within the 2 week period between April
1 and 15 in 2017. Plate c illustrates our modeling approach: We break city into small spatial tiles approximately 1.5 times
the size of an average city block, and compute models that capture multi-scale dependencies between the sequential event
streams recorded at distinct tiles. In this paper, we treat violent and property crimes separately, and show that these categories
have intriguing cross-dependencies. Plate d illustrates our modeling approach. For example, to predict property crimes at
some spatial tile », we proceed as follows: Step 1) we infer the probabilistic transducers that estimate event sequence at r
by using as input the sequences of recorded infractions (of different categories) at potentially all remote locations (s, s’, s”
shown), where this predictive influence might transpire over different time delays (a few shown on the edges between s and
r). Step 2) Combine these weak estimators linearly to minimize zero-one loss. The inferred transducers can be thought of as
inferred local activation rules, which are then linearly composed, reversing the approach of linearly combining input and then
passing through fixed activation functions in standard neural net architectures. The connected network of nodes (variables)
with probabilistic transducers on the edges comprises the Granger Network.
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Fig. 2. Predictive Performance of Granger Nets. a an b illustrate the out-of-sample area under the receiver operating
characteristics curve (AUC) for predicting violent and property crimes respectively. The prediction is made a week in advance,
and the event is registered as a successful prediction if we get a hit within +1 day of the predicted date. ¢ illustrates the
distribution of AUC on average, individually for violent and property crimes. Our mean AUC is close to 90%. Panels d-f
shows influence Diffusion & Perturbation Space. If we are able to infer a model that is predicts event dynamics at a
specific spatial tile (the target) using observations from a source tile A days in future, then we say the source tile is within
the influencing neighborhood for the target location with a delay of A. d illustrates the spatial radius of influence for 0.5,
1, 2 and 3 weeks, for violent (upper panel) and property crimes (lower panel). Note that the influencing neighborhoods,
as defined by our model, are large and approach a radius of 6 miles. Given the geometry of the City of Chicago, this
maps to a substantial percentage of the total area of urban space under consideration, demonstrating that crime manifests
demonstrable long-range and almost city-wide influence. e illustrates the extent of a few inferred neighborhoods at time delay
of at most 3 days. f illustrates the average rate of influence diffusion measured by number of predictive models inferred that
transduce influence as we consider longer and longer time delays. Note that the rate of influence diffusion falls rapidly for
property crimes, dropping to zero in about a week, whereas for violent crimes, the influence continues to diffuse even after
three weeks.



103

104

105

107

108

109

110

111

A. Spatial Distribution of C Distribution of Increased Arrests D Distribution of Increased Arrests
Hardship Index from Increase In Violent Crimes from Increase In property Crimes
r r’

B. Spatial Change of Arrest Rate E Distribution of Decreased Arrests F. Distribution of Decreased Arrests
Against Socio-Economic Indicators from Increase In Violent Crimes from Increase In Property Crimes

_(I) Perturbation In Violent Crime Rate
Q

[S)

O g v ==

95% confidehc

[

(ll) Perturbation: property crime Rate

regression coeffcient (
o 2
= _
F
B

socio-economic indicators

Fig. 3. Estimating Bias. a illustrates the distribution of hardship index (see Sl). ¢, d, e, and f suggest biased response
to perturbations in crime rates. With a 10% increase in violent or property crime rates, we see an approximately a
30% decrease in arrests when averaged over the city. The spatial distribution of locations that experience a positive vs.
negative change in arrest rate reveals a strong preference favoring wealthy locations. If neighborhoods are doing better
socio-economically, increased crime predicts increased arrests. A strong converse trend is observed in predictions for
poor and disadvantaged neighborhoods, suggesting that under stress, wealthier neighborhoods drain resources from their
disadvantaged counterparts. b illustrates this more directly via a multi-variable regression, where hardship index is seen to
make a strong negative contribution.

model is trained on crime statistics, demographic makeup, meteorological data, and Google street view images
to track graffiti, achieving an out-of-sample AUC of 83.3%. Our AUC is demonstrably higher (see Table II), and
we predict with significantly less data (only past events), and 7 days into future (instead of next-day). Additionally,
the use of demographic and graffiti is problematic with the possibility of introducing racial and socio-economic
bias, with dubious causal value. In the second article ', the authors combine convolutional and recurrent neural
networks with weather, socio-economic, transportation, and crime data, to predict the next-day count of crime in
Chicago. As spatial tiles, the authors use standard police beats, which break up Chicago into 274 regions. Police
beats reflect the classical notion of social neighborhoods, and measure approximately 1 sg. mile on average?°.
In comparison, our spatial times are approximately 0.04 sq. miles, representing a 2500% higher resolution. This
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Fig. 4. Prediction of property and violent crimes across major US cities and dependence of perturbation response
onh socio-economic status of local neighborhoods. Panels a-f illustrate the AUCs achieved in six major US cities. These
cities were chosen on the basis of the availability of detailed event logs in the public domain. All of these cities show
comparably high predictive performance. Panel g illustrates the results obtained by regressing crime rate and perturbation
response against SES variables (shown here for poverty, as estimated by the 2018 US census). We note that while crime
rate typically goes up with increasing poverty, the number of events observed one week after a positive perturbation of
5-10% increase in crime rate is predicted to fall with increasing poverty. We suggest that this decrease is explainable by
reallocation of enforcement resources disproportionately, away from disadvantaged neighborhoods in response to increased
event rates, which leads to smaller number of reported crimes.

model achieves a classification accuracy of 75.6% for Chicago, which compares against our accuracy of > 90%
(See Table Il). While this competing model tracks more crime categories, it is limited to next-day predictions with
significantly coarser spatial resolution. We also compare the predictive ability of naive autoregressive baseline
models (See Material and Methods and Table IIl), which perform poorly, but provide a yardstick to meaningfully
compare our claimed performance estimates.
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With our precise predictive apparatus in place, we run a series of computational experiments that perturb the
rates of violent and property crimes, and log the resulting alterations in future event rates across the city. By
inspecting the effect of socio-economic status (SES) on the perturbation response, we investigate whether
enforcement and policy biases modulate outcomes. The inferred stress response of the city suggests the
presence of socio-economic bias (See Fig. 3). Wealthier neighborhoods away from the inner city respond to
elevated crime rates with increased arrests, while arrest rates in disadvantaged neighborhoods drop, but the
converse does not occur (See Fig. 3, panels e and f). Resource constraints on law enforcement, combined
with biased prioritization to wealthier neighborhoods, result in reduced enforcement across the remainder of the
city. This provides evidence for enforcement bias within U.S. cities that parallels widely discussed notions of
suburban bias in wealthy suburbs?'-22. While self-evident at the scale of countries and regions, the existence
of unequal resource allocation in cities, where political power and influence concentrates in selective, wealthy
neighborhoods, has been widely suspected?3-27. Our analysis provides direct support for this contention, which
shows up robustly for all years analyzed, going back over one and half decades in Chicago. Figs 6 and 7
show that these patterns are stable over time, at least in recent years. Additionally, Fig. 5 show the effect of
perturbations across all variables, suggesting that crime reduction from perturbations seems to be most effective
in regions with high crime rates, with SES confounders.

Beyond Chicago, we analyze criminal event logs available in the public domain for six additional major US cities:
Detroit, Philadelphia, Atlanta, Austin, San Francisco and Los Angeles. In all these cities we obtain comparably
high performance in predicting violent and property crimes, with average AUC ranging between 86-90% (See
Fig 4a-f). In addition, our observed pattern of perturbation responses in Chicago, which suggests de-allocation
of policing resources from disadvantaged neighborhoods to advantaged ones, is replicated in all these cities.
While crime rate increases with degrading SES status of local neighborhoods, the number of predicted events
a week after a positive 5-10% increase in crime rate is predicted to go down. Thus increasing the crime rate
leads to a smaller number of reported crimes, a pattern holding more often in poorer neighborhoods.

Our analysis also sheds light on the continuing debate over the choice for neighborhood boundaries in urban
crime modeling?-3'. In Fig. 2d-f, we demonstrate that despite apparent natural boundaries, influence is often
communicated over large distances and decays slowly, especially for violent crimes. More importantly, this study
reveals how the “correct” choice of spatial scale should not be a major issue in sophisticated learning algorithms
where optimal scales can be inferred automatically. We find that there exists a skeleton set of spatial tiles, which
have strong influence on the overall event patterns (See Fig. 10). These induce a cellular decomposition of the
city that identifies functional neighborhoods, where the cell-size adapts automatically to the local event dynamics.

LIMITATIONS & CONCLUSION

To our knowledge, this is the first analysis exploring perturbations of predictive data-driven models to probe the
social dynamics of crime and its enforcement. Our ability to probe for the extent of enforcement bias is limited by
our dataset; since inference of crime patterns are easily skewed by arrest rates. Disproportionate police response
in Black communities can contribute to biases in event logs, which might propagate into inferred models. This
has resulted in significant pushback from diverse communities against predictive policing®?. Our approach is
free from manual encoding of features (and thus resistant to implicit biases of the modelers themselves), but
biases arising from disproportionate surveillance might still remain.

Even with its current limitations, however, this new addition to the toolbox of computational social science enables
validation of complex theory from observed event incidence, supplementing the use of measurable proxies
and potential biases in questionnaire-based data collection strategies. While classical approaches 3336 broaden
our understanding of the societal forces shaping both urban and regional landscapes, these approaches have
neither successfully attempted to forecast individual infraction reports, nor reveal how these predictive patterns
manifest systematic enforcement bias. In this study, we show how the ability of Granger Networks to predict such
events not only opens new doors for precise intervention, but also advances the diagnosis and explanation of
complex social patterns. We acknowledge the danger that powerful predictive tools place in the hands of over-
zealous states in the name of civilian protection, but here we demonstrate their unprecedented ability to audit
enforcement biases and hold states accountable in ways inconceivable in the past. We encourage widespread
debate regarding how these technologies are used to augment state action in public life, and call for transparency
that allows for continuous evaluation, reconsideration and critique.
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MATERIALS AND METHODS

In this study we use historical geolocated incidence data of criminal infractions to model and predict future events
in Chicago, Philadelphia, San Francisco, Austin, Los Angeles, Detroit and Atlanta. Each of the cities considered
have a specific temporal and spatial resolution, which are optimized to maximize predictive performance (See
Table 1). The predictive performance obtained in these cities are enumerated in Table Il. The distribution of AUCs
obtained in Chicago for earlier years (2014-2017, predicted individually) are shown in Fig 8.

Data Source

The sources of the crime incidence data used in this study for the different US cities are enumerated in Table I.
Theses logs include spatio-temporal event localization along with the nature, category, and a brief description
of the recorded incident. For the City of Chicago, we also have access to the number of arrests made during or
as a result of each event. For Chicago, the log is updated daily, keeping current with a lag of 7 days, and we
make predictions for each of the years 2014-2017 (using 3 years before the target year for model inference, and
1 year for out-of-sample validation) for the prediction results shown in Figure 1. The evolving nature of the urban
scenescape®’ necessitates that we restrict the modeling window to a few years at a time. The length of this
window is decided by trading off loss of performance from shorter data streams to that the evolution of underlying
generative processes for longer streams. The training and testing periods of the other cities is tabulated in Table I.
In this study, we consider two broad categories of criminal infractions: violent crimes consisting of homicides,
assault, battery etc., and property crimes consisting of burglary, theft, motor vehicle theft etc. Drug crimes are
excluded from our consideration due to the possibility of ambiguity in the use of violence in such events. For
the City of Chicago, the number of individuals arrested during each recorded event is considered a separate
variable to be modeled and predicted, which allows us to investigate the possibility of enforcement biases in
subsequent perturbation analyses.

We also use data on socio-economic variables available at the portal corresponding to Chicago community
areas and census tracts, including % of population living in crowded housing, those residing below the poverty
line, those unemployed at various age groups, per capita income, and the urban hardship index38. Such data is
also obtained from the City of Chicago data portal. Additionally, we use data on poverty estimates for the other
cities, which are obtained https://www.census.gov.

Spatial and Temporal Discretization & Event Quantization

Event logs are processed to obtain time-series of relevant events, stratified by occurrence locations. This is
accomplished by choosing a spatial discretization, and focusing on one individual spatial tile at a time, which
allows us to represent the event log as a collection of sequential event streams (See Fig. 1c). Additionally, we
discretize time, and consider the sum total of events recorded within each time window.

Coarseness of these discretizations reflects a trade-off between computational complexity and event localization
in space and time. Spatial and temporal discretizations are not independently chosen; a finer spatial discretization
dictates a coarser temporal quantization, and vice versa to prevent long no-event stretches and long periods of
contiguous event records, both of which reduce our ability to obtain reliable predictors. For the City of Chicago,
we fix the temporal quantization to 1 day, and choose a spatial quantization such that we have high empirical
entropy rates for the time series obtained. This results in spatial tiles measuring 0.00276° x 0.0035° in latitude
and longitude respectively, which is approximately 1000’ across, roughly corresponding to an area of under 2 x 2
city blocks. Thus, any two points within our spatial tile are at worst in neighboring city blocks. We dropped from
our analysis the tiles that have too low a crime rate (< 5% of days within the modeling window had any event
recorded) to reduce computational complexity, resulting in an N = 2205 of spatial tiles in the city of Chicago.

The temporal and spatial resolution is adjusted in a similar manner for the other cities (See Table ).

Thus, we end up with three different integer-valued time series at each spatial tile: 1) violent crime (v), 2)
property crime (u) and 3) number of arrests (w) in the City of Chicago. For other cities, we have only the first
two categories, since information on arrests was not available. We ignore the magnitude of the observations, and
treat them as Boolean variables. Thus, our models simply predict the presence or absence of a particular event
type in a discrete spatial tile within a neighboring city block and observation window, :.e., within the temporal
resolution chosen, which is 1 day except for Atlanta, where is it is chosen to be 2 days (See Table I).
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Inferring Generators of Spatio-temporal Cross-dependence

Let £ = {41, -+ ,¢n} be the set of spatial tiles, and £ = {u,v,w} be the set of event categories as described
in the last section. At location ¢ € L for variable e € &, at time ¢, we have ({,¢e); € {0, 1}, with 1 indicating the
presence of at least one event. The set of all such combined variables (space + event type) is denoted as S,
ie,S=LxE LetT={0,---,M — 1} denote the training period consisting of M time steps. Because for any
time t, (¢, e); is a random variable, our goal here is to learn its dependency relationships with its own past, and
with other variables in S to accurately estimate its future distribution for ¢ > T'.

To infer the structure of our predictive model, we learn a finite state probabilistic transducer'® (referred to as
a Crossed Probabilistic Finite State Automata or a XPFSA'S) for each possible source-target pair s, € S.
Given a sequence of events at the source, these inferred transducers estimate the distribution of events at
target r for some future point in time. Ability to estimate such a non-trivial distribution indicates the presence of
causal influence. Here we assume that causal influence from the source to the target manifests as the source
being able to predict events occurring at the target, better than the target can do by itself. This interpretation
follows from Granger's eponymous approach to statistical causality3°. Importantly, we do not assume that the
underlying processes are iid, or that the model has any particular linear structure. Additionally, such influence is
not restricted to be instantaneous. The source events might impact the target with a time delay, :.e., a specific
model between the source and target might predict events delayed by an a priori determined number of steps
Amae = A 2 0 specific to the model. Here we model the influence structure for each integer-valued delay
separately. Thus, for source s and target ¢, we can have A,,.. + 1 transducers each modeling the influence for
a specific delay in {0, Apqz - The maximum number of steps in time delay A, is chosen a priori, based on
the problem at hand.

While these influences or dependencies may differ for different delays, they need not be symmetric between
source and target pairs. The complete set, comprising at most |S|?(A..q.z + 1) models, represents a predictive
framework for asymmetric multi-scale spatio-temporal phenomena. Note that the number of possible models
increase quickly. For example, for the City of Chicago, for A,... = 60 with 2205 spatial tiles and three event
categories, the number of inferred models is bounded above by =~ 2.6 billion.

ur approach consists of inferring XPFSAs in two key steps (See Fig. 1d, and discussion later in SI-Section 2):
First, we infer XPFSA models for all source-target pairs and all delays up to A,,... In the second step, we learn
a linear combination of these transducers to maximize predictive performance. Denoting the observed event
sequence in time interval (co,t] at source s as s, *°, the XPFSA I}, estimates the distribution of events for
target r at time step ¢t + k. This is accomplished by learning an equivalence relation on the historical event
sequences observed at source s, such that equivalent histories induce an approximately identical future event
distribution at target r, k steps in the future. Thus, for example, the XPFSA shown in Fig. 1d has four states,
indicating that there are 4 such equivalence classes of observations that induce the distinct output probabilities
shown from each state. Often this estimate is not very precise due to the possibility for multi-scale and multi-
source influence, e.g., when target r is influenced by multiple sources with different time delays. In the second
step, we employ a standard gradient boosting regressor for each target, to optimize the linear combination of
inferred transducers and learn the scalar weights w; , for source s, target r and delay k. Detailed pseudocode
of the inference algorithms are provided in the Sl-section 1.

To compare with a standard neural net architecture, these probabilistic transducers may be viewed as local
non-linear activation functions. With neural networks we repeatedly compute affine combination of inputs and
apply fixed non-linear activation to the combined input and finally optimize affine combination weights via
backpropagation, but here we first learn the local non-linear activations, and then optimize the linear or affine
combination of weak estimators. Optimizing the weights is a significantly simpler, local operation and may be
done with any standard regressor. In contrast to recurrent neural nets (RNN), the role of hidden layer neurons
is partially accounted for by states of the XPFSA, which are a priori undetermined both with respect to their
multiplicity and their transition connectivity structure.

Computational & Model Complexity

We assume the maximum time delay in the influence propagation to be 60 days for all cities, which for the City
of Chicago results in at most 2,669, 251, 725 inferred models, of which 61, 650, 000 are useful with -y 2 0.01. Model
inference in this case consumed approximately 200K core-hours on 28 core Intel Broadwell processors, when
carried out with incidence data over the period Jan 1, 2014 to December 31, 2016. Computational cost for other
time-periods and other cities are comparable and roughly scale with the square of the number of spatial tiles,
and linearly with the length of time-quantized data-streams considered as input to the inference algorithm.
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Crime Prediction Metrics

For each spatial location, the inferred Granger Net maps event histories to a raw risk score as a function of
time. The higher this value, the higher the probability of an event of target type occurring at that location, within
the specified time window. To make crisp predictions, however, we must choose a decision threshold for this
raw score. Conceptually identical to the notion of Type 1 and Type 2 errors in classical statistical analyses, the
choice of a threshold trades off false positives (Type 1 error) for false negatives (Type 2 error). Choosing a small
threshold results in predicting a larger fraction of future events correctly, i.e., have a high true positive rate (TPR),
while simultaneously suffering from a higher false positive rate (FPR), and vice versa. The receiver operating
characteristic curve (ROC) is the plot of the FPR vs the TPR, as we vary this decision threshold. If our predictor
is good, we will consistently achieve high TPR with small FPR resulting in a large area under the ROC curve
denoted as the AUC. Importantly, AUC measures intrinsic performance, independent of the threshold choice.
Thus, the AUC is immune to class imbalance (the fact that crimes are by and large rare events). An AUC of
50% indicates that the predictor does no better than random, and an AUC of 100% implies that we can achieve
perfect prediction of future events, with zero false positives.

We use a flexible approach in evaluating AUC; a positive prediction is treated as correct if there is at least one
event recorded in +£1 time steps in the target spatial tile.

Predictability Analysis

In the City of Chicago, we can predict events approximately a week in advance at the spatial resolution of +1
city blocks with a temporal resolution of +1 day, with a false positive rate of less than 20% and a median true
positive rate of 78%. The predictive performance in the other cities is enumerated in Table Il. While not directly
modeled in the frequency domain, we found that the event forecasts produce very similar signatures in the
frequency domain (See Fig. 9), when compared over the first 150 days of each out-of-sample period (1 yr).

Spatial Neighborhoods

The degree of causal influence exerted by one variable (the source stream) on another (the target stream) is
quantified by the coefficient of causal dependence (v, see Sl-Section 2). Identifying the source-target pairs for
which the coefficient of causality is high (See Fig 10), we note that there exists a sparse set of spatial tiles
which exert nearly all of the influence in the entire set of observed variables. Thus, observing these variables
alone would enable us to make good event forecasts. These tiles span the expanse of the city, and a Voronoi
decomposition based on the centers of these tiles in shown in Fig 10b. Such a decomposition demonstrates an
algorithmic approach to choosing optimal neighborhoods for urban analysis.

Perturbation Analysis

We experimented with positive and negative perturbations to both violent and property crime rates ranging from 1
to 10% of observed rates. Response to perturbed crime rates was measured as the relative change from nominal
baseline in estimated time-average for the predicted event frequencies 1 week in the future, corresponding to
violent and property crimes and number of arrests.

Results from our perturbation experiments shed light both on the stability characteristics of crime in Chicago,
and further allowed us to look for evidence of biased police enforcement responses under stress. Under stress,
well-off neighborhoods tend to drain resources disproportionately from disadvantaged locales (See Fig. 3). For
economically well-off neighborhoods in the bottom 25% of the hardship index are much more likely to see a near
-proportional increase (~ 15%) in law enforcement response, measured by the number or predicted arrests on
a 10% increase in crime rates (See Fig. 3, panels ¢ and d, which show how regions with increased enforcement
response are concentrated in well-off neighborhoods), while the rest of the city see a drop in predicted response
of about twice the magnitude (> 30%). Increased crimes causes enforcement resources to be drained from
disadvantaged neighborhoods to support their better socioeconomic counterparts. We performed multi-variable
linear regression analysis to evaluate the question in another way. Here we regressed violent and property crime
rates, independently, on the variables listed in (Fig. 3b), including a slope intercept variable in each model. In both
models, the hardship index exhibits a strong, negative influence on changes in arrest rate from perturbations that
increase violent and the property crime rates, which contradicts what might be expected in the absence of bias.
Poorer neighborhoods have more crime and so these socio-economic indicators should contribute positively
to the arrest rate with increasing crime. These patterns were replicated in our perturbation experiments for all
preceding years we analyzed (2014 through 2017, See Fig 6 and 7). Response measured in the property an
violent crimes, and in the associated arrests from perturbations is detailed in Fig 5.
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CRIME EVENT LOG INFORMATION FOR CITIES CONSIDERED

TABLE |

Atlanta Austin Detroit Los Angeles Philadelphia ??:ncisco Chicago
no. of
variables! 510 1082 1161 3287 1037 975 3826
temporal
resolution 2 days 1 day 1 day 1 day 1 day 1 day 1 day
bounding 33.65°N, 30.14°N, 42.30°N, 33.71°N, 390.88°N, 37.71°N, 41.64°N,
box of 33.86°N, 30.48°N, 42.45°N, 34.33°N, 40.12°N, 37.81°N, 42.06°N,
modeled 84.54°W, 97.89°W, 83.28°W, 118.65°W, 75.27°W, 122.51°W, 87.88°W,
region 84.31°W 97.63°W 82.91°W 118.16°W 74.96°W 122.36°W 87.52°W
spatial / / ’ / , / / / / / / ’ / /
resolution 983" x 983 983’ x 983 983’ x 983 983’ x 983 983’ x 983 983’ x 983 951’ x 1006
Spatial
exclusion 2.5% 2.5% 2.5% 2.5% 5.0% 2.5% 5.0%
threshold?
training 14/01/01- 16/01/01- 12/01/01- 16/01/01- 16/01/01- 14/01/01- 14/01/01-
period 18/12/31 18/12/31 14/12/31 18/12/31 18/12/31 16/12/31 16/12/31
test period 19/01/01- 19/01/01- 15/01/01- 19/01/01- 19/01/01- 17/01/01- 17/01/01-
P 19/07/20 19/04/11 15/04/11 19/04/11 19/04/11 17/04/11 17/04/11
rediction
ﬁorizon 6 days 3 days 3 days 3 days 3 days 3 days 7 days
violent event count event count event count event count event count event count event count
crime stat 2649, rate 20132, rate 20922, rate 72355, rate 33803, rate 23317, rate 179274, rate
' 3.98% 5.45% 3.72% 4.83% 8.11% 7.16% 7.7%
ropert event count event count event count event count event count event count event count
ekt I 23522, rate 88929, rate 39840, rate 205435, rate 85683, rate 107835, rate 263661, rate
) 4.51% 6.22% 3.30% 5.49% 9.02% 12.83% 7.0%
data. WWW. data.
data source opendata. austintexas. data. data.lacity.org  opendata data.sfgov. cityofchicago.
atlantapd.org gov detroitmi.gov philly.org org org

1 No. of variables indicates the total number of time series considered for violent and property crimes.

2 Tiles with less than threshold event-rate were excluded.

We also carried out similar perturbation analyses for the other cities, and observed that with increasing poverty
we have expected increase of observed crime rates, but an unexpected decrease in violent and property crimes

TABLE I
PREDICTION PERFORMANCE WITH GRANGER NET FOR SEVEN US CITIES

city ‘

property crimes |

violent crimes

| median AUC | accuracy’ | median AUC | accuracy
Atlanta 0.90 0.84 0.88 0.84
Austin 0.87 0.82 0.88 0.83
Detroit 0.90 0.86 0.89 0.84
Philadelphia 0.87 0.81 0.87 0.81
Los Angeles 0.84 0.83 0.84 0.83
San Francisco 0.86 0.80 0.86 0.81
Chicago 0.87 0.93 0.87 0.94

T Accuracy calculated with sensitivity x frequency+specificity x (1 — frequency).

after a 5-10% simulated uptick in either category of crimes (See Fig. 4).

Naive Baselines: Autoregressive Integrated Moving Average (ARIMA) Models

To explore the predictive ability of naive baseline models on our datasets, we consider four ARIMA? configu-

rations with lag orders p = 5 and 10, numbers of differencing d = 1 and 2, and the window of moving average
g = 0. Let y; be the series we want to model and y; be y; differenced by d times, the ARIMA(p, d,q) models

series y; by

yé =c+ ¢1y1ls_1 + -+ ¢py,’5_p + 918,5_1 + -+ qut—q + €&

(1)
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TABLE IlI
NAIVE BASELINE RESULTS: MEAN AUC ACHIEVED WITH ARIMA MODELS

city | ARIMA(5,1,0) ARIMA(10,1,0) ARIMA(5,2,0) ARIMA(10,2,0)

Atlanta 0.65 0.66 0.62 0.66

Austin 0.65 0.68 0.63 0.67

Detroit 0.59 0.62 0.57 0.61
Philadelphia 0.64 0.65 0.63 0.65
Los Angeles 0.64 0.67 0.61 0.66
San Francisco 0.68 0.70 0.66 0.69
Chicago 0.70 0.71 0.67 0.69

where ¢,,...,¢, and 6i,...,6, are the coefficients to be fitted. In Eq. (1), y;_,s are the historical values of

y; whose inclusion models the influence of past values on the current value (autoregression), and e;_xS are

the white noise terms whose inclusion models the dependence of current value against current and previous

(observed) white noise error terms or random shocks (moving average). Specifically, we use the following four

models for the earthquake and the crime datasets
1

Yo =c+ by + o+ Psyps (2)
ygl) =ct+ ¢y 1+ + dsY 10 (3)
y =t diyi o+ bsvhs (4)
u = ety g+ + sYigo (5)

where yt(d) is y; different by d times (y,El) =y —y;_1 and y,EQ) =y — 2y:_1 + y¢_2). For simple benckmarking,

we apply the ARIMA model to each individual time series, which means the predictive model is trained without
exogenous variables. For the implementation, we use the Python statsmodels package?, and the result is
shown in Tab. lll. The inadequate performance of ARIMA may be due to 1) the use of a single data stream
limits the ability of ARIMA to capture the interplay between co-evoluting processes, and 2) a pre-determined lag
order fails to capture the possibly varying temporal memory of individual processes.
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A. Logarithmic Coefficient of Causality b. Voronoi Decomposition with high predicting points
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Fig. 10. Automatic Neighborhood Decomposition Using Event Predictability Computing a biclustering on the source-vs-
target influence matrix (panel A) isolates a set of spatial tiles that are, on average, good predictors for all other tiles. Using
this set, we use a Voronoi decomposition of the city (Panel B), which realizes an automatic spatial decomposition of the
urban space, driven by event predictability.
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Algorithm 1: Granger Net

Data:

. asetofsequence {z;: :=1,...,N} of length n;

« a hyperparameter0 < e < 1;

« a model inference length ng < n;

« a maximal delay Amax;

« athreshold coefficient of causal dependence -, for admissible models;
Result: A set of XPFSA models and a set of scalar weights for each target r € {1,..., N}.
/+ Infer models

1 Let M, = 0 be the set of admissible models for each target r € {1,..., N};
2 foreachdelay A = 1,..., Amax do

3 for each source s =1,...,N and targetr =1,...,N do
4 Let zin = (z5)7° %

5 Let Tout — ($7‘)Zo+l,

6 Calculate PFSA G = GenESeSS (zin, €);

7 Calculate XPFSA H,; o = xGenESeSS (zout, £);

8 Let 7, o = coefCausalDependence(G, H; A);

9 if v, > 70 then

10 | Let M, = M, U {H;x};

/* Learn scalar weights

11 for each targetr =1,...,N do

12 | Letl, ={(s,A): thereis a model H 5 € M,};

13 for each timestampt =1,...,n — no do

14 Let x; be a vector with index set I.;

15 for each pair (s, A) € I, do

16 Let zi, the length I sub-sequence of z, that ends in the (nq +t — A)-th entry;
17 Let the entry of x[s, A] = predict (H; ,Zin);
18 Let y: = z,[no + t];

19 Let X the matrix with the t-th row being x:;

20 Let y be the vector with the ¢-th entry being v;;

21 Initialize a suitable regressor Reg;

22 | Get scalar weights w, = (wf,,A)(s aver, = Reg (X,y);

23 return {(M,,w,): r=1,...,N};

*/

*/

Algorithm 2: GenESeSs

Data: A sequence z over alphabet £,0< e < 1

Result: State set Q, transition map é, and transition probability 7

/* Step One: Approximate e—synchronizing sequence

Let L = [logy 1/¢];

Calculate the derivative heap DI equaling {$§ : y is a sub-sequence of z with |y| < L};
Let C be the convex hull of DZ;

Select zo with ¢, being a vertex of C and has the highest frequency in z;

/+ Step Two: Identify transition structure

B W N =

5 Initialize Q = {go};

6 Associate to go the sequence identifier zlfo = zo and the probability vector dq, = 4320;
7 Let @ be the set of states that are just added and initialize it to be Q;

8 while Q # 0 do

9 Let Qnew = 0 be the set of new states;

10 | for(g,0) € Q x T do

11 Letz =z and d = ¢2,;

12 if [|d — dg'||, < € for some q' € Q then

13 | Leté(q,0) =4';

14 else

15 Let Qnew = Qnew U {gnew} and Q@ = Q U {Qr_]ew};

16 Associate to gnew the sequence identifier x'qdnew = zo and the probability vector dg,., = d;
17 Let 6(g,0) = gnew;

18 Let Q = Qnew;
19 Take a strongly connected subgraph of the labeled directed graph defined by @ and §, and denote the vertex set of
the subgraph again by Q;
/* Step Three: Identify transition probability
20 Initialize counter N [q, o] for each pair (¢,0) € Q x Z;
21 Choose a random starting state g € Q;
22 foro € z do
23 Let N[g,0] = Nq,0] +1;
24 Letg =4 (q,0);
25 Let(q) = [(NV[q,0]),ex];
26 return Q, §, T,

*/

*/

*/




Algorithm 3: xGenESeSS

20
21
22
23
24
25

26
27

Data: A sequence zj, over alphabet Zin, a sequence zout over alphabet 2oy, and 0 < e < 1
Result: State set R, transition map n, and output probability x
/* Step One: Approximate e—synchronizing sequence */
LetL = [log‘zin‘ 1/e-| ;
Calculate cross derivative heap DI equaling {$5™* : y is a sub-sequence of iy with |y| < L};
Let C be the convex hull DF™;
Select zo with ¢30°** being a vertex of C and has the highest frequency in z;
/* Step Two: Identify transition structure */
Initialize R = {ro};
Associate to r the sequence identifier /¢ = z, and the probability vector x (ro) = $E0=;
Let R be the set of states that are just added and initialize it to be R;
while E # 0 do
Let Rnew = 0 be the set of new states;
for (r,o) € R x 2, do
Letz = 29 and d = 3™,
if [|[d — x ()|l < € for some r’ € R then
| Letn(r,o)=r"
else
Let Rnew = Rnew (@] {Tnew} and R=RU {Tnlew};
Associate to rmew the sequence identifier m',dnew = zo and the probability vector x (rnew) = d;
Let n(r,0) = rnew;
Let ﬁ = Rnew;
Take a strongly connected subgraph of the labeled directed graph defined by R and n, and denote the vertex set of
the subgraph again by R;
/+ Step Three: Identify output probability */
Initialize counter N [r, 7] for each pair (r,7) € R X Zou;
Choose a random starting state r € R;
for:e1,...,|zin| do
Let o; be the ¢-th symbol in zi, and 7; be the -th symbol in zoyt;
Let N[r, 7] = N[r, ] + 1;
Letr =n(r,01);
Let x (r) = [N [r, 7))
return R, n, x;

TEEuut]] ’




2 THEORY OF PROBABILISTIC AUTOMATA

Granger Net is assembled from local models which are, in general, crossed probabilistic automata (XPFSA).

The construction of a Granger Net consists of two steps: 1) local model generation and network pruning and 2)
local model aggregation for comprehensive prediction. Event prediction is accomplished by aggregating these local
activations via a local regressor. No global optimization of these aggregation function is acrried out.

The model generation step of Granger Net is accomplished by the algorithms GenEsess (See Algorithm 2) and
xGenESeSS (See Algorithm 3). xGenESesSs produces XPFSA models that captures how the history of a source
process influences the future of a target process. The Granger Net construction is described in Algorithm 1, and takes
as input a set {zs : s € S} of length-n time series, hyperparameters € and ny < n for local model inference, Amax for
maximum time delay, and -y, for thresholding admissible models. For each target sequence z,, Granger Net outputs a
set of admissible models M, with a scalar weight for each model in M, via model inference and pruning (line 1-10)
and training of the aggregation weights (line 11-22).

Step 1: Model inference and pruning

The Granger Net framework models the influence from a source time series z; on a target time series z, at a particular
time delay A by an XPFSA H; A (line 7). Thus, we infer |S| Amax XPFSA models for each z,. which yields |S|>Amax
models in total. Since the number of XPFSA models increases quadratically with the number of time series and strength
of the links may vary, pruning low-performing models early is important for parsimony. Granger Net rejects models by
thresholding on the coefficient of causal dependence -y, 5 of model H; 5 (line 8), which measures the strength of
dependence of the output sequence on the input one. More specifically, we have

uncertainty of the next output in z,. with observation of z )

uncertainty of the next output in z,.

v can be evaluated from the synchronous composition of the PFSA that models the input process (line 6) and the
XPFSA that models the causal influence. Granger Net retains the model H; , if and only if 7 , is greater than a
pre-specified threshold -yg. At the conclusion of Step 1, Granger Net returns an admissible set of models

My ={H A Yn >0} (2

'Y:,A =1-

foreachr € S.

Step 2: Train linear weights

In this step, we integrate the local models in z,’'s admissible set for forecasting events in z,.. To do this, Granger Net
trains a linear coefficient w; 5 for each H; A € M, (line 22) so that the final prediction for z, at time step A is equal to

> wiaHia ((@)"7%), @)

where (:z:s)h_A is the truncation of z; at h — A. To compute the coefficients, we solve a regression problem rReg(X,y)

(line 22) for each r € S with the predictor variables being predictions x;[s, A] obtained by running each sequence
(z5)™ T2 through H; A (line 17), and the outcome variable being z.[no + t], value of z, at time ny + ¢ (line 18).
Hence, the X matrix is the (n — ng) x |M,| matrix with the entry indexed by ¢, (s, A) given by x:[s, A] and y, the
(n — ng)-dimensional vector with the entry indexed by ¢ given by z,.[no + t]. We can solve for the linear weights with
any standard regressor.

Inference Algorithms

On line 6 and 7 of Algorithm 1, Granger Net calls subroutine xGenESesSs, which infers XPFSA as models of cross-
dependencies between processes. Here, we establish the correctness of GenESess.

The inference algorithm for PFSA is called GenESess for Generator Extraction Using Self-similar Semantics. The PFSA
model is based on the concept of the causal state. A dynamical system reaches the same causal state via distinct paths
if the futures are statistically indistinguishable. More precisely, each process over an alphabet & of size m gives rise
naturally to an m-ary tree with the nodes at level d being sequences of length d, and the edge from the node z to zo,
o € %, labeled by Pr(o|z) —the probability of observing o as the next output after z. By the definition of causal state, if
two subtrees are identical with respect to edge labels, then their roots are sequences that lead the system to the same
causal state. Identifying all the roots of identical subtrees induces a finite automaton structure whose unique strongly
connected component is the generating model of the process.

Definition 1 (Probabilistic Finite-State Automaton (PFSA)). A PFSA G is a quadruple (Q, L, 6, ), where Q is a finite
set, ¥ is a finite alphabet, § : @ x ¥ — X is called the transition map, and 7 : @ — Px, where Py is the space of
probability distributions over 3., is called the transition probability.

Step 2 of Algorithm 2 (line 5-19) is an implementation this subtree “stitching” approach under finiteness of input data.
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Note that the criterion for “stitching” two subtrees with roots z and z’ is that their edge labels are identical for all depths,
which translates to p(y|z) = p(y|z') for sequence y of all lengths. The criterion is not verifiable with finite data, and
hence GenEsess identifies two subtrees if they agree on depth one. Defining symbolic derivative ¢, to be the vector
with the entry indexed by o given by p(c|z), GenESess identifies z and z’ if ¢, = ¢,. This approach works well under
the assumption that the target PFSA is in general position, meaning that different causal states have distinct symbolic
derivatives. In practice, GenESeSS uses empirical symbolic derivative defined below to approximate ¢.. Let z be an
input sequence of finite length, the empirical symbolic derivative 435 of a sub-sequence y of z is a probability vector
with the entry indexed by o given by
vz number of yo in z
¢y(0) = number of ¥ in z @
GenESeSS identifies two sequences (line 12) if their empirical symbolic derivatives are within an e-neighborhood of
each other for certain € > 0.

For simplicity, we first illustrate how GenESess solves the transition structure of the target PFSA from a sample path z
generated from a process of Markov order k. Assuming the zo produced by Step 1 (line 4) is A, the empty sequence,
GenESesSS starts by calculating ¢5, <.e., the empirical distribution on 3, and records X as the identifier of the first state.
Then, GenESesSs appends A with each ¢ € %, and calculates $§. By the general position assumption and assuming z
is long enough, with high probability, no <Z>§ is within an e-neighborhood of $§, for o # o', and hence each ¢ is recorded
as the identifier for a new state. In fact, GenEsess will keep on appending symbols to identifiers of stored states and
adding new states until it reaches a sequence of length k+1. Assumingy = oy - - - 0,01, Since the process is of order
k, we have ¢, = @, for z = 02+~ 0441, and hence, with high probability, $2 and ¢2 can be within an e-neighborhood
of each other given long enough input z. In this case, GenESesSs identifies the state represented by y with that of z. In
fact, GenEsess will identify all states represented by sequences of length k£ + 1 to some previously-stored states. And
since no new states can be found, GenESeSS exits the loop on line 8 after iteration & + 1. Taking the strongly connected
component on line 19, GenESeSs gets the correct transition structure.

However, not all processes generated by PFSA have finite Markov order. For such cases, Step 2 of GenESess will
never exit in theory, since there exists no n € N such that every causal state is visited for sequences with length < n.
And if we implement an artificial exit criterion, the model inferred might be unnecessarily large, and have hard-to-model
approximations. We address this issue via the notion of synchronization — the ability to identify that we are localized or
synchronized to a particular state despite being uncertain of the initial state.

In Step 1 of Algorithm 2 (line 1-4), GenESess finds an almost synchronizing sequence, which allows GenESess to distill
a structure that is similar to that of the finite Markov order cases, and thus carry out the subtree “stitching” procedure
described before. A sequence z is synchronizing if all sequences that end with the suffix z terminates on the same
causal state. A process is synchronizable if it has a synchronizing sequence, and a PFSA is synchronizable if the
process it generates is synchronizable. The structure of the “graph” of a perfectly synchronizable PFSA is that of a
co-final automata.

A sequence z is e-synchronizing? to the state q if the distribution p, on the state set @ induced by z satisfies
Iz — eqll,, < €, where e, is the base vector with 1 on the entry indexed by g and 0 elsewhere. The importance of ¢-
synchronizing sequence is twofold: 1) since ¢ = pfﬁ, where 11 is the |@| % |X| matrix with the row indexed by g given
by 7(g), a g close to e, give rise to a ¢, close to T(g). And 2) although sequences prefixed by an e-synchronizing
sequence to a state ¢ may not remain e-synchronizing to state g, they are close to g on average.

To find an almost synchronizing sequence algorithmically?, GenESess first calculates the convex hull of symbolic
derivatives of subsequences of z up to length L (line 1-3), and then selects a sequence zy whose symbolic derivative
is a vertex of the convex hull (line 4). Since the convex hull of {¢I Tz € EL} is a linear projection of the convex hull
{pc(z) : = € T} via I, we can expect sequence z with ¢, being a vertex of the convex hull of {¢, : z € £%} to be
a good candidate for an almost synchronizing sequence.

The corresponding inference algorithm for XPFSA is called xGenESesSs, which takes as input two sequences zj,, Zoyt,
and a hyperparameter €, and outputs an XPFSA in a manner very similar to the inference algorithm of PFSA.

While a PFSA models how the past of a time series influences its own future, a XPFSA models how the past of an
input time series influences the future of an output time series. Hence, while in the SSC algorithm of PFSA, we identify
sequences if they lead to futures that are statistically indistinguishable, in the SSC algorithm of XPFSA, we identify
sequences if they lead to the same future distribution of the output.

Definition 2 (Crossed Probabilistic Finite-State Automaton (XPFSA)). A crossed probabilistic finite-state automaton
is specified by a quintuple (Zin, R, n; Lout, X), Where Ty, is a finite input alphabet, R is a finite state set, n is a partial
function from R x I, to R called transition map, X, is a finite output alphabet, and x is a function from R to Px,_,
called output probability map, where Py, is the space of probability distributions over Lo In particular, x(r, T) is the
probability of generating T € X, from a stater € R.

Note that a XPFSA has no transition probabilities defined between states as a PFSA does. The XPFSA in the example
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has a binary input alphabet and an output alphabet of size 3. The bar charts next to the 4 states of the XPFSA indicate
the output probability distributions. To generate a sample path, an XPFSA requires an input sequence over its input
alphabet.

Similar to the PFSA construction approach, here we compute the cross symbolic derivative, which is the ordered tuple

Pr(t|z), with 7 € B, and a sequence z over Zij,. We compute the empirical approximation of the cross symbolic

derivative from sequences zj, and zy; as:
$Zinyzout(T) —

number of T in z,y after y transpires in zj,
number of sub-sequence y in zj,

(5)

Thus, xGenESess is almost identical to GenESeSs except that, in Step 1, xGenESeSs finds an almost synchronizing
sequence based on cross symbolic derivatives, and in Step 2, identifies the transition structure based on the sim-
ilarity between cross symbolic derivatives. Arguments for establishing the effectiveness of GenESess carry over to
xGenESeSS with empirical symbolic derivative replaced by empirical cross symbolic derivative.

3 SOFTWARE AVAILABILITY & REPOSITORY

Software for the cynet implementation, with instructions for installation and quick-start examples, is available at
https://pypi.org/project/cynet/
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Figure 1

Crime Data & Modeling Approach. a and b show the recorded infractions within the 2 week period
between April 1 and 15in 2017. Plate c illustrates our modeling approach: We break city into small
spatial tiles approximately 1.5 times the size of an average city block, and compute models that capture



multi-scale dependencies between the sequential event streams recorded at distinct tiles. In this paper, we
treat violent and property crimes separately, and show that these categories have intriguing cross-
dependencies. Plate d illustrates our modeling approach. For example, to predict property crimes at some
spatial tile r, we proceed as follows: Step 1) we infer the probabilistic transducers that estimate event
sequence at r by using as input the sequences of recorded infractions (of different categories) at
potentially all remote locations (s; s 0 ; s 00 shown), where this predictive influence might transpire over
different time delays (a few shown on the edges between s and r). Step 2) Combine these weak
estimators linearly to minimize zero-one loss. The inferred transducers can be thought of as inferred local
activation rules, which are then linearly composed, reversing the approach of linearly combining input
and then passing through fixed activation functions in standard neural net architectures. The connected
network of nodes (variables) with probabilistic transducers on the edges comprises the Granger Network.
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Predictive Performance of Granger Nets. a an b illustrate the out-of-sample area under the receiver
operating characteristics curve (AUC) for predicting violent and property crimes respectively. The
prediction is made a week in advance, and the event is registered as a successful prediction if we get a hit
within +1 day of the predicted date. c illustrates the distribution of AUC on average, individually for violent
and property crimes. Our mean AUC is close to 90%. Panels d-f shows influence Diffusion & Perturbation



Space. If we are able to infer a model that is predicts event dynamics at a specific spatial tile (the target)
using observations from a source tile + days in future, then we say the source tile is within the influencing
neighborhood for the target location with a delay of D. d illustrates the spatial radius of influence for

0.5, 1, 2 and 3 weeks, for violent (upper panel) and property crimes (lower panel). Note that the
influencing neighborhoods, as defined by our model, are large and approach a radius of 6 miles. Given
the geometry of the City of Chicago, this maps to a substantial percentage of the total area of urban
space under consideration, demonstrating that crime manifests demonstrable long-range and almost
city-wide influence. e illustrates the extent of a few inferred neighborhoods at time delay of at most 3
days. f illustrates the average rate of influence diffusion measured by number of predictive models
inferred that transduce influence as we consider longer and longer time delays. Note that the rate of
influence diffusion falls rapidly for property crimes, dropping to zero in about a week, whereas for violent
crimes, the influence continues to diffuse even after three weeks.



A. Spatial Distribution of c Distribution of Increased Arrests D Distribution of Increased Arrests
Hardship Index from Increase In Violent Crimes from Increase In property Crimes
. T - Ty

B. spatial change of Arrest Rate E. Distribution of Decreased Amrests |- Distribution of Decreased Arrests
Against Socio-Economic Indicators from Increase In Uinhnt cnm; from Increase In Property Crimes

{ Perturbation In Violent Crime Rate

%]

%

Sﬂﬂ Perturbation: property crime Rate
. e
wle BN
Sl LN
&fﬁ
Vo

#
mlu-nennomlc indicators

Figure 3

Estimating Bias. a illustrates the distribution of hardship index (see Sl). ¢, d, e, and f suggest biased
response to perturbations in crime rates. With a 10% increase in violent or property crime rates, we see an
approximately a 30% decrease in arrests when averaged over the city. The spatial distribution of locations
that experience a positive vs. negative change in arrest rate reveals a strong preference favoring wealthy
locations. If neighborhoods are doing better socio-economically, increased crime predicts increased
arrests. A strong converse trend is observed in predictions for poor and disadvantaged neighborhoods,



suggesting that under stress, wealthier neighborhoods drain resources from their disadvantaged
counterparts. b illustrates this more directly via a multi-variable regression, where hardship index is seen
to make a strong negative contribution.
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Figure 4

Prediction of property and violent crimes across major US cities and dependence of perturbation
response on socio-economic status of local neighborhoods. Panels a-f illustrate the AUCs achieved in six



major US cities. These cities were chosen on the basis of the availability of detailed event logs in the
public domain. All of these cities show comparably high predictive performance. Panel g illustrates the
results obtained by regressing crime rate and perturbation response against SES variables (shown here
for poverty, as estimated by the 2018 US census). We note that while crime rate typically goes up with
increasing poverty, the number of events observed one week after a positive perturbation of 5-10%
increase in crime rate is predicted to fall with increasing poverty. We suggest that this decrease is
explainable by reallocation of enforcement resources disproportionately, away from disadvantaged
neighborhoods in response to increased event rates, which leads to smaller number of reported crimes.
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Figure 5

Perturbation Effects Across Variables. We see that the decrease of violent crimes from increase of
property crimes are localized in disadvantaged neighborhoods (panel g). Similarly, the decrease of
property crimes from increase of violent crimes is also localized to disadvantaged neighborhoods (panel
a), as well as the decreased violent crimes from increased arrests (panel k). We see a weaker localization
for the corresponding increases in crime rates under similar perturbations. Looking at other pairs of



variables under perturbation (rest of the panels), we generally do not see a very prominent
correspondence with the distribution of socio-economic indicators. It seems crimes (and particulalrly
violent crimes) are easier to dampen in Icales with high existing crime rates, which is desirable result. But
such conclusions are currently confounded by SES variables, and futher work is needed to investigate
these effects more thoroughly.
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Figure 6

Stability of Suburban Bias over Years (Violent Crimes). We show that the nature of the perturbation
response shown in Fig. 3 in the main text holds true for earlier years as well: panels a and b correspond to
year 2014, c and d correspond to 2015 and e and f correspond to year 2016, all of which follow the same
pattern shown in Fig. 3 in the main text.
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Figure 7

Stability of Suburban Bias over Years (Property Crimes). We show that the nature of the perturbation
response shown in Fig. 3 in the main text holds true for earlier years as well: panels a and b correspond to
year 2014, c and d correspond to 2015 and e and f correspond to year 2016, all of which follow the same
pattern shown in Fig. 3 in the main text.
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Out of Sample Predictive Performance over the Years. We show that the predictive performance is very
stable, and variation in mean AUC is limited to the third place of decimal, at least when analyzing the last

few years (4 years shown).
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Figure 9

Comparison of Predicted vs Actual Sample Paths in Time and Frequency Domains. Panels a,cand e
show that the predicted and actual sample paths are pretty close for different years, when compared over
the first 150 days of each year. Panels b, d and f show that the Fourier coefficients match up pretty well
as well. More importantly, while our models do not explicitly incorporate any periodic elements that are
being tuned, we still manage to capture the weekly, (approximately) biweekly and longer periodic
regularities.
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Figure 10

Automatic Neighborhood Decomposition Using Event Predictability Computing a biclustering on the
source-vs-target influence matrix (panel A) isolates a set of spatial tiles that are, on average, good
predictors for all other tiles. Using this set, we use a Voronoi decomposition of the city (Panel B), which
realizes an automatic spatial decomposition of the urban space, driven by event predictability.



