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Policing efforts to thwart urban crime often rely on detailed reports of criminal infractions. However,12

crime rates do not document the distribution of crime in isolation, but rather its complex relationship13

with policing and society. Several results attempting to predict future crime now exist, with varying14

degrees of predictive efficacy. However, the very idea of predictive policing has stirred controversy,15

with the algorithms being largely black boxes producing little to no insight into the social system16

of crime, and its rules of organization. The issue of how enforcement interacts with, modulates, and17

reinforces crime has been rarely addressed in the context of precise event predictions. In this study,18

we demonstrate that while predictive tools have often been designed to enhance state power through19

surveillance, they also enable the tracing of systemic biases in urban enforcement—surveillance of20

the state. We introduce a novel stochastic inference algorithm as a new forecasting approach that21

learns spatio-temporal dependencies from individual event reports with demonstrated performance far22

surpassing past results (e.g., average AUC of ✙ ✾✵✪ in the City of Chicago for property and violent23

crimes predicted a week in advance within spatial tiles ✙ ✶✵✵✵ ft across). These precise predictions enable24

equally precise evaluation of inequities in law enforcement, discovering that response to increased crime25

rates is biased by the socio-economic status of neighborhoods, draining policy resources to wealthy26

areas with disproportionately negative impacts for the inner city, as demonstrated in Chicago and six27

other major U.S. metropolitan areas. While the emergence of powerful predictive tools raise concerns28

regarding the unprecedented power they place in the hands of over-zealous states in the name of civilian29

protection, our approach demonstrates how sophisticated algorithms enable us to audit enforcement30

biases, and hold states accountable in ways previously inconceivable.31

THE emergence of large-scale data and ubiquitous data-driven modeling has sparked widespread government32

interest in the possibility of predictive policing 1–5: predicting crime before it happens to enable anticipatory33

enforcement. Such efforts, however, do not document the distribution of crime in isolation, but rather its complex34

relationship with policing and society. In this study, we reconceptualize the process of crime prediction, build35

novel methods to improve it, and use it to diagnose both the distribution of reported crime and biases in its36

enforcement. The history of statistics has co-evolved with the history of criminal prediction, but also with the37

history of enforcement critique. Siméon Poisson published the Poisson distribution and his theory of probability38

in an analysis of the number of wrongful convictions in a given country6. Andrey Markov introduced Markov39

processes to show that dependencies between outcomes could still obey the central limit theorem to counter40

Pavel Nekrasov’s argument that because Russian crime reports obeyed the law of large numbers, “decisions41

made by criminals to commit crimes must all be independent acts of free will”7.42

In this study, we conceptualize the prediction of criminal reports as that of modeling and predicting a system of43

spatio-temporal point processes unfolding in social context. We report a fundamentally new approach to predict44

urban crime at the level of individual events, with predictive accuracy far greater than has been achieved in45

past. Rather than simply increasing the power of states by predicting the when and where of anticipated crime,46

our new tools allow us to audit them for enforcement biases, and garner deep insight into the nature of the47

dynamical processes through which policing and crime co-evolve in urban spaces.48



Classical investigations into the mechanics of crime8–10 have recently given way to event-level crime predictions49

that have enticed police forces to deploy them preemptively and stage interventions targeted at lowering crime50

rates. These efforts have generated multi-variate models of time-invariant hotspots11–13, and estimate both long51

and short term dynamic risks1–3. One of the earliest approaches to predictive policing is based on the use52

of epidemic-type aftershock sequences (ETAS)4,5, originally developed to model seismic phenomena. While53

these approaches have suggested the possibility of predictive policing, many achieve only limited out-of-sample54

performance4,5. More recently, deep learning architectures have yielded better results14. Machine learning55

systems, however, are often black boxes producing little insight regarding the social system of crime and its56

rules of organization. Moreover, the issue of how enforcement interacts with, modulates and reinforces crime57

has been rarely addressed in the context of precise event predictions.58

RESULTS AND DISCUSSION59

Here we show that urban crime may be predicted reliably one or more weeks in advance, enabling model-60

based simulations that reveal both the pattern of reported infractions and the pattern of corresponding police61

enforcement. We learn from recorded historical event logs, and validate on events in the following year beyond62

those in the training sample. Using incidence data from the City of Chicago, our novel spatio-temporal network63

inference algorithm infers patterns of past event occurrences, and constructs a communicating network (the64

Granger Network) of local estimators to predict future infractions. In this study, we consider two broad categories65

of reported criminal infractions: violent crimes consisting of homicides, assault, and battery, and property crimes66

consisting of burglary, theft and motor-vehicle thefts. The number of individuals arrested during each recorded67

event is separately modeled and allows us to investigate the possibility and pattern of enforcement bias.68

We begin by processing event logs to obtain time-series of relevant events, stratified by location and discretized69

by time, yielding sequential event streams for 1) violent crime (✈), 2) property crime (✉) and 3) number of70

arrests (✇), as shown in Fig. 1, panels a, b and c. To infer the structure of the Granger Net, we learn a finite71

state probabilistic transducer15,16 for each possible source-target pair s❀ r and time lag ✁ (Fig. 1d), yielding72

✙ ✷✿✻ billion modeled associations. Following the notion of Granger causality17, links in the network are retained73

as they predict events at the target better than the target can predict itself. More details on the on problem74

characteristics and performance are provided in Tab. I and II respectively.75

For Chicago, we make predictions separately for violent and property crimes, individually within spatial tiles76

roughly ✶✵✵✵❢t across and time windows of ✶ day approximately a week in advance with AUCs ranging from77

✽✵ � ✾✾✪ across the city. We summarize our prediction results in Fig. 2, where panels a and b illustrate the78

geospatial scatter of AUC obtained for different spatial tiles and types of crime, and c shows the distribution of79

AUCs achieved. Out-of-sample predictive performance remains stable over time; our predictions on successive80

years (each time using three preceding years for training, and one year for out-of-sample test, see Fig. 8 shows81

little variation in average AUC. Inspecting excerpts of the average daily crime rate for successive years also82

shows close match between actual and predicted behavior (See Fig. 9, panels a, c and e.) The remaining83

panels (b, d and f) in the same figure illustrate how the Fourier coefficients match up, showing that we are able84

to capture periodicities at the weekly and bi-weekly scales, and beyond.85

Unlike previous efforts1–5, we do not impose pre-defined spatial constraints. In contrast to contiguous diffusion86

phenomena encountered in physical systems, crime may spread across the complex landscape of a modern87

city unevenly, with regions hyperlinked by transportation networks, socio-demographic similarity, or historical88

collocation. Rather than assuming that events far off across the city will have a weaker influence compared with89

those physically near in space or time, we probe the topological structure emergent in the inferred dependencies90

to estimate the shape, size and organization of neighborhoods that best predict events at each location. The91

results illustrated in Fig. 2d and e show that the situation is complex with the locally predictive neighborhoods92

varying widely in geometry and size, implying that restricting analysis to relatively small local communities93

within the city is sub-optimal for crime prediction and enforcement analysis. In order to analyze if the effect of94

reported criminal infractions diffuse outward in space and time, we simply calculate temporal-spatial distances95

of influences, then average across all neighborhoods in the city, revealing the rapid decay with time delay in96

diffusion rates shown in Fig. 2f. Interestingly we find the property and violent crimes differ in their rates of97

influence diffusion (Fig. 2f); while the effect of property crimes decays rapidly in days, violent reported events98

shape the dynamics for weeks to come.99

Forecasting crime via analyzing historical patterns has been attempted before18,19. These approaches use state100

of the art machine deep learning tools based on recurrent and convolutional neural networks (NN). In the first101

article18, the authors train a NN model to predict next-day events for ✻✵❀ ✸✹✽ sample points in Chicago. The102
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Activation

Step 2.
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Combination
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(April 1-15, 2017)

b. Property Crimes including
Thefts & Burglaries
(April 1-15, 2017)

c. Spatio-temporal Modeling Approach Using
Daily Event Counts & Spatial Tiles ✙ 1000 ft across

d. Example of Remote Sources Influencing Property Crimes at a Target Location
(Note: Influence Exists over Multiple Time-scales from the Same Source)

Fig. 1. Crime Data & Modeling Approach. a and b show the recorded infractions within the 2 week period between April

1 and 15 in 2017. Plate c illustrates our modeling approach: We break city into small spatial tiles approximately 1.5 times

the size of an average city block, and compute models that capture multi-scale dependencies between the sequential event

streams recorded at distinct tiles. In this paper, we treat violent and property crimes separately, and show that these categories

have intriguing cross-dependencies. Plate d illustrates our modeling approach. For example, to predict property crimes at

some spatial tile r, we proceed as follows: Step 1) we infer the probabilistic transducers that estimate event sequence at r

by using as input the sequences of recorded infractions (of different categories) at potentially all remote locations (s❀ s✵
❀ s

✵✵

shown), where this predictive influence might transpire over different time delays (a few shown on the edges between s and

r). Step 2) Combine these weak estimators linearly to minimize zero-one loss. The inferred transducers can be thought of as

inferred local activation rules, which are then linearly composed, reversing the approach of linearly combining input and then

passing through fixed activation functions in standard neural net architectures. The connected network of nodes (variables)

with probabilistic transducers on the edges comprises the Granger Network.
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Fig. 2. Predictive Performance of Granger Nets. a an b illustrate the out-of-sample area under the receiver operating

characteristics curve (AUC) for predicting violent and property crimes respectively. The prediction is made a week in advance,

and the event is registered as a successful prediction if we get a hit within ✝✶ day of the predicted date. c illustrates the

distribution of AUC on average, individually for violent and property crimes. Our mean AUC is close to ✾✵✪. Panels d-f

shows influence Diffusion & Perturbation Space. If we are able to infer a model that is predicts event dynamics at a

specific spatial tile (the target) using observations from a source tile ✁ days in future, then we say the source tile is within

the influencing neighborhood for the target location with a delay of ✁. d illustrates the spatial radius of influence for 0.5,

1, 2 and 3 weeks, for violent (upper panel) and property crimes (lower panel). Note that the influencing neighborhoods,

as defined by our model, are large and approach a radius of ✻ miles. Given the geometry of the City of Chicago, this

maps to a substantial percentage of the total area of urban space under consideration, demonstrating that crime manifests

demonstrable long-range and almost city-wide influence. e illustrates the extent of a few inferred neighborhoods at time delay

of at most ✸ days. f illustrates the average rate of influence diffusion measured by number of predictive models inferred that

transduce influence as we consider longer and longer time delays. Note that the rate of influence diffusion falls rapidly for

property crimes, dropping to zero in about a week, whereas for violent crimes, the influence continues to diffuse even after

three weeks.
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B. Spatial Change of Arrest Rate

Against Socio-Economic Indicators

Fig. 3. Estimating Bias. a illustrates the distribution of hardship index (see SI). c, d, e, and f suggest biased response

to perturbations in crime rates. With a 10% increase in violent or property crime rates, we see an approximately a

✸✵✪ decrease in arrests when averaged over the city. The spatial distribution of locations that experience a positive vs.

negative change in arrest rate reveals a strong preference favoring wealthy locations. If neighborhoods are doing better

socio-economically, increased crime predicts increased arrests. A strong converse trend is observed in predictions for

poor and disadvantaged neighborhoods, suggesting that under stress, wealthier neighborhoods drain resources from their

disadvantaged counterparts. b illustrates this more directly via a multi-variable regression, where hardship index is seen to

make a strong negative contribution.

model is trained on crime statistics, demographic makeup, meteorological data, and Google street view images103

to track graffiti, achieving an out-of-sample AUC of ✽✸✿✸✪. Our AUC is demonstrably higher (see Table II), and104

we predict with significantly less data (only past events), and ✼ days into future (instead of next-day). Additionally,105

the use of demographic and graffiti is problematic with the possibility of introducing racial and socio-economic106

bias, with dubious causal value. In the second article19, the authors combine convolutional and recurrent neural107

networks with weather, socio-economic, transportation, and crime data, to predict the next-day count of crime in108

Chicago. As spatial tiles, the authors use standard police beats, which break up Chicago into ✷✼✹ regions. Police109

beats reflect the classical notion of social neighborhoods, and measure approximately 1 sq. mile on average20.110

In comparison, our spatial times are approximately ✵✿✵✹ sq. miles, representing a 2500% higher resolution. This111



a. Atlanta (mean AUC: ✙ ✵✿✽✾)

b. Philadelphia (mean AUC: ✙ ✵✿✽✹)

c. San Francisco (mean AUC: ✙ ✵✿✽✻)

d. Detroit (mean AUC: ✙ ✵✿✾✵)
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Fig. 4. Prediction of property and violent crimes across major US cities and dependence of perturbation response

on socio-economic status of local neighborhoods. Panels a-f illustrate the AUCs achieved in six major US cities. These

cities were chosen on the basis of the availability of detailed event logs in the public domain. All of these cities show

comparably high predictive performance. Panel g illustrates the results obtained by regressing crime rate and perturbation

response against SES variables (shown here for poverty, as estimated by the 2018 US census). We note that while crime

rate typically goes up with increasing poverty, the number of events observed one week after a positive perturbation of

5-10% increase in crime rate is predicted to fall with increasing poverty. We suggest that this decrease is explainable by

reallocation of enforcement resources disproportionately, away from disadvantaged neighborhoods in response to increased

event rates, which leads to smaller number of reported crimes.

model achieves a classification accuracy of ✼✺✿✻✪ for Chicago, which compares against our accuracy of ❃ ✾✵✪112

(See Table II). While this competing model tracks more crime categories, it is limited to next-day predictions with113

significantly coarser spatial resolution. We also compare the predictive ability of naive autoregressive baseline114

models (See Material and Methods and Table III), which perform poorly, but provide a yardstick to meaningfully115

compare our claimed performance estimates.116



With our precise predictive apparatus in place, we run a series of computational experiments that perturb the117

rates of violent and property crimes, and log the resulting alterations in future event rates across the city. By118

inspecting the effect of socio-economic status (SES) on the perturbation response, we investigate whether119

enforcement and policy biases modulate outcomes. The inferred stress response of the city suggests the120

presence of socio-economic bias (See Fig. 3). Wealthier neighborhoods away from the inner city respond to121

elevated crime rates with increased arrests, while arrest rates in disadvantaged neighborhoods drop, but the122

converse does not occur (See Fig. 3, panels e and f). Resource constraints on law enforcement, combined123

with biased prioritization to wealthier neighborhoods, result in reduced enforcement across the remainder of the124

city. This provides evidence for enforcement bias within U.S. cities that parallels widely discussed notions of125

suburban bias in wealthy suburbs21,22. While self-evident at the scale of countries and regions, the existence126

of unequal resource allocation in cities, where political power and influence concentrates in selective, wealthy127

neighborhoods, has been widely suspected23–27. Our analysis provides direct support for this contention, which128

shows up robustly for all years analyzed, going back over one and half decades in Chicago. Figs 6 and 7129

show that these patterns are stable over time, at least in recent years. Additionally, Fig. 5 show the effect of130

perturbations across all variables, suggesting that crime reduction from perturbations seems to be most effective131

in regions with high crime rates, with SES confounders.132

Beyond Chicago, we analyze criminal event logs available in the public domain for six additional major US cities:133

Detroit, Philadelphia, Atlanta, Austin, San Francisco and Los Angeles. In all these cities we obtain comparably134

high performance in predicting violent and property crimes, with average AUC ranging between ✽✻-✾✵✪ (See135

Fig 4a-f). In addition, our observed pattern of perturbation responses in Chicago, which suggests de-allocation136

of policing resources from disadvantaged neighborhoods to advantaged ones, is replicated in all these cities.137

While crime rate increases with degrading SES status of local neighborhoods, the number of predicted events138

a week after a positive 5-10% increase in crime rate is predicted to go down. Thus increasing the crime rate139

leads to a smaller number of reported crimes, a pattern holding more often in poorer neighborhoods.140

Our analysis also sheds light on the continuing debate over the choice for neighborhood boundaries in urban141

crime modeling28–31. In Fig. 2d-f, we demonstrate that despite apparent natural boundaries, influence is often142

communicated over large distances and decays slowly, especially for violent crimes. More importantly, this study143

reveals how the “correct” choice of spatial scale should not be a major issue in sophisticated learning algorithms144

where optimal scales can be inferred automatically. We find that there exists a skeleton set of spatial tiles, which145

have strong influence on the overall event patterns (See Fig. 10). These induce a cellular decomposition of the146

city that identifies functional neighborhoods, where the cell-size adapts automatically to the local event dynamics.147

LIMITATIONS & CONCLUSION148

To our knowledge, this is the first analysis exploring perturbations of predictive data-driven models to probe the149

social dynamics of crime and its enforcement. Our ability to probe for the extent of enforcement bias is limited by150

our dataset; since inference of crime patterns are easily skewed by arrest rates. Disproportionate police response151

in Black communities can contribute to biases in event logs, which might propagate into inferred models. This152

has resulted in significant pushback from diverse communities against predictive policing32. Our approach is153

free from manual encoding of features (and thus resistant to implicit biases of the modelers themselves), but154

biases arising from disproportionate surveillance might still remain.155

Even with its current limitations, however, this new addition to the toolbox of computational social science enables156

validation of complex theory from observed event incidence, supplementing the use of measurable proxies157

and potential biases in questionnaire-based data collection strategies. While classical approaches33–36 broaden158

our understanding of the societal forces shaping both urban and regional landscapes, these approaches have159

neither successfully attempted to forecast individual infraction reports, nor reveal how these predictive patterns160

manifest systematic enforcement bias. In this study, we show how the ability of Granger Networks to predict such161

events not only opens new doors for precise intervention, but also advances the diagnosis and explanation of162

complex social patterns. We acknowledge the danger that powerful predictive tools place in the hands of over-163

zealous states in the name of civilian protection, but here we demonstrate their unprecedented ability to audit164

enforcement biases and hold states accountable in ways inconceivable in the past. We encourage widespread165

debate regarding how these technologies are used to augment state action in public life, and call for transparency166

that allows for continuous evaluation, reconsideration and critique.167



MATERIALS AND METHODS168

In this study we use historical geolocated incidence data of criminal infractions to model and predict future events169

in Chicago, Philadelphia, San Francisco, Austin, Los Angeles, Detroit and Atlanta. Each of the cities considered170

have a specific temporal and spatial resolution, which are optimized to maximize predictive performance (See171

Table I). The predictive performance obtained in these cities are enumerated in Table II. The distribution of AUCs172

obtained in Chicago for earlier years (2014-2017, predicted individually) are shown in Fig 8.173

Data Source174

The sources of the crime incidence data used in this study for the different US cities are enumerated in Table I.175

Theses logs include spatio-temporal event localization along with the nature, category, and a brief description176

of the recorded incident. For the City of Chicago, we also have access to the number of arrests made during or177

as a result of each event. For Chicago, the log is updated daily, keeping current with a lag of ✼ days, and we178

make predictions for each of the years 2014-2017 (using ✸ years before the target year for model inference, and179

✶ year for out-of-sample validation) for the prediction results shown in Figure 1. The evolving nature of the urban180

scenescape37 necessitates that we restrict the modeling window to a few years at a time. The length of this181

window is decided by trading off loss of performance from shorter data streams to that the evolution of underlying182

generative processes for longer streams. The training and testing periods of the other cities is tabulated in Table I.183

In this study, we consider two broad categories of criminal infractions: violent crimes consisting of homicides,184

assault, battery etc., and property crimes consisting of burglary, theft, motor vehicle theft etc. Drug crimes are185

excluded from our consideration due to the possibility of ambiguity in the use of violence in such events. For186

the City of Chicago, the number of individuals arrested during each recorded event is considered a separate187

variable to be modeled and predicted, which allows us to investigate the possibility of enforcement biases in188

subsequent perturbation analyses.189

We also use data on socio-economic variables available at the portal corresponding to Chicago community190

areas and census tracts, including ✪ of population living in crowded housing, those residing below the poverty191

line, those unemployed at various age groups, per capita income, and the urban hardship index38. Such data is192

also obtained from the City of Chicago data portal. Additionally, we use data on poverty estimates for the other193

cities, which are obtained https://www.census.gov.194

Spatial and Temporal Discretization & Event Quantization195

Event logs are processed to obtain time-series of relevant events, stratified by occurrence locations. This is196

accomplished by choosing a spatial discretization, and focusing on one individual spatial tile at a time, which197

allows us to represent the event log as a collection of sequential event streams (See Fig. 1c). Additionally, we198

discretize time, and consider the sum total of events recorded within each time window.199

Coarseness of these discretizations reflects a trade-off between computational complexity and event localization200

in space and time. Spatial and temporal discretizations are not independently chosen; a finer spatial discretization201

dictates a coarser temporal quantization, and vice versa to prevent long no-event stretches and long periods of202

contiguous event records, both of which reduce our ability to obtain reliable predictors. For the City of Chicago,203

we fix the temporal quantization to ✶ day, and choose a spatial quantization such that we have high empirical204

entropy rates for the time series obtained. This results in spatial tiles measuring ✵✿✵✵✷✼✻°✂ ✵✿✵✵✸✺° in latitude205

and longitude respectively, which is approximately ✶✵✵✵✵ across, roughly corresponding to an area of under ✷✂✷206

city blocks. Thus, any two points within our spatial tile are at worst in neighboring city blocks. We dropped from207

our analysis the tiles that have too low a crime rate (❁ ✺✪ of days within the modeling window had any event208

recorded) to reduce computational complexity, resulting in an ◆ ❂ ✷✷✵✺ of spatial tiles in the city of Chicago.209

The temporal and spatial resolution is adjusted in a similar manner for the other cities (See Table I).210

Thus, we end up with three different integer-valued time series at each spatial tile: 1) violent crime (✈), 2)211

property crime (✉) and 3) number of arrests (✇) in the City of Chicago. For other cities, we have only the first212

two categories, since information on arrests was not available. We ignore the magnitude of the observations, and213

treat them as Boolean variables. Thus, our models simply predict the presence or absence of a particular event214

type in a discrete spatial tile within a neighboring city block and observation window, ✐✿❡✿, within the temporal215

resolution chosen, which is ✶ day except for Atlanta, where is it is chosen to be ✷ days (See Table I).216



Inferring Generators of Spatio-temporal Cross-dependence217

Let ▲ ❂ ❢❵✶❀ ✁ ✁ ✁ ❀ ❵◆❣ be the set of spatial tiles, and ❊ ❂ ❢✉❀ ✈❀ ✇❣ be the set of event categories as described218

in the last section. At location ❵ ✷ ▲ for variable ❡ ✷ ❊ , at time t, we have ✭❵❀ ❡✮t ✷ ❢✵❀ ✶❣, with ✶ indicating the219

presence of at least one event. The set of all such combined variables (space + event type) is denoted as ❙,220

i.e., ❙ ❂ ▲✂ ❊ . Let ❚ ❂ ❢✵❀ ✁ ✁ ✁ ❀▼ � ✶❣ denote the training period consisting of ▼ time steps. Because for any221

time t, ✭❵❀ ❡✮t is a random variable, our goal here is to learn its dependency relationships with its own past, and222

with other variables in ❙ to accurately estimate its future distribution for t ❃ ❚ .223

To infer the structure of our predictive model, we learn a finite state probabilistic transducer16 (referred to as224

a Crossed Probabilistic Finite State Automata or a XPFSA15) for each possible source-target pair s❀ r ✷ ❙.225

Given a sequence of events at the source, these inferred transducers estimate the distribution of events at226

target r for some future point in time. Ability to estimate such a non-trivial distribution indicates the presence of227

causal influence. Here we assume that causal influence from the source to the target manifests as the source228

being able to predict events occurring at the target, better than the target can do by itself. This interpretation229

follows from Granger’s eponymous approach to statistical causality39. Importantly, we do not assume that the230

underlying processes are iid, or that the model has any particular linear structure. Additionally, such influence is231

not restricted to be instantaneous. The source events might impact the target with a time delay, ✐✿❡✿, a specific232

model between the source and target might predict events delayed by an a priori determined number of steps233

✁♠❛① ≧ ✁ ≧ ✵ specific to the model. Here we model the influence structure for each integer-valued delay234

separately. Thus, for source s and target t, we can have ✁♠❛① ✰ ✶ transducers each modeling the influence for235

a specific delay in ❢✵❀✁♠❛①❣. The maximum number of steps in time delay ✁♠❛① is chosen a priori, based on236

the problem at hand.237

While these influences or dependencies may differ for different delays, they need not be symmetric between238

source and target pairs. The complete set, comprising at most ❥❙❥✷✭✁♠❛① ✰ ✶✮ models, represents a predictive239

framework for asymmetric multi-scale spatio-temporal phenomena. Note that the number of possible models240

increase quickly. For example, for the City of Chicago, for ✁♠❛① ❂ ✻✵ with ✷✷✵✺ spatial tiles and three event241

categories, the number of inferred models is bounded above by ✙ ✷✿✻ billion.242

ur approach consists of inferring XPFSAs in two key steps (See Fig. 1d, and discussion later in SI-Section 2):243

First, we infer XPFSA models for all source-target pairs and all delays up to ✁♠❛①. In the second step, we learn244

a linear combination of these transducers to maximize predictive performance. Denoting the observed event245

sequence in time interval ✭✶❀ t❪ at source s as s�✶t , the XPFSA Hs
r❀❦ estimates the distribution of events for246

target r at time step t ✰ ❦. This is accomplished by learning an equivalence relation on the historical event247

sequences observed at source s, such that equivalent histories induce an approximately identical future event248

distribution at target r, ❦ steps in the future. Thus, for example, the XPFSA shown in Fig. 1d has four states,249

indicating that there are ✹ such equivalence classes of observations that induce the distinct output probabilities250

shown from each state. Often this estimate is not very precise due to the possibility for multi-scale and multi-251

source influence, e.g., when target r is influenced by multiple sources with different time delays. In the second252

step, we employ a standard gradient boosting regressor for each target, to optimize the linear combination of253

inferred transducers and learn the scalar weights ✦sr❀❦ for source s, target r and delay ❦. Detailed pseudocode254

of the inference algorithms are provided in the SI-section 1.255

To compare with a standard neural net architecture, these probabilistic transducers may be viewed as local256

non-linear activation functions. With neural networks we repeatedly compute affine combination of inputs and257

apply fixed non-linear activation to the combined input and finally optimize affine combination weights via258

backpropagation, but here we first learn the local non-linear activations, and then optimize the linear or affine259

combination of weak estimators. Optimizing the weights is a significantly simpler, local operation and may be260

done with any standard regressor. In contrast to recurrent neural nets (RNN), the role of hidden layer neurons261

is partially accounted for by states of the XPFSA, which are a priori undetermined both with respect to their262

multiplicity and their transition connectivity structure.263

Computational & Model Complexity264

We assume the maximum time delay in the influence propagation to be ✻✵ days for all cities, which for the City265

of Chicago results in at most ✷❀ ✻✻✾❀ ✷✺✶❀ ✼✷✺ inferred models, of which ✻✶❀ ✻✺✵❀ ✵✵✵ are useful with ✌ ≧ ✵✿✵✶. Model266

inference in this case consumed approximately ✷✵✵❑ core-hours on ✷✽ core Intel Broadwell processors, when267

carried out with incidence data over the period Jan 1, 2014 to December 31, 2016. Computational cost for other268

time-periods and other cities are comparable and roughly scale with the square of the number of spatial tiles,269

and linearly with the length of time-quantized data-streams considered as input to the inference algorithm.270



Crime Prediction Metrics271

For each spatial location, the inferred Granger Net maps event histories to a raw risk score as a function of272

time. The higher this value, the higher the probability of an event of target type occurring at that location, within273

the specified time window. To make crisp predictions, however, we must choose a decision threshold for this274

raw score. Conceptually identical to the notion of Type 1 and Type 2 errors in classical statistical analyses, the275

choice of a threshold trades off false positives (Type 1 error) for false negatives (Type 2 error). Choosing a small276

threshold results in predicting a larger fraction of future events correctly, i.e., have a high true positive rate (TPR),277

while simultaneously suffering from a higher false positive rate (FPR), and vice versa. The receiver operating278

characteristic curve (ROC) is the plot of the FPR vs the TPR, as we vary this decision threshold. If our predictor279

is good, we will consistently achieve high TPR with small FPR resulting in a large area under the ROC curve280

denoted as the AUC. Importantly, AUC measures intrinsic performance, independent of the threshold choice.281

Thus, the AUC is immune to class imbalance (the fact that crimes are by and large rare events). An AUC of282

✺✵✪ indicates that the predictor does no better than random, and an AUC of ✶✵✵✪ implies that we can achieve283

perfect prediction of future events, with zero false positives.284

We use a flexible approach in evaluating AUC; a positive prediction is treated as correct if there is at least one285

event recorded in ✝✶ time steps in the target spatial tile.286

Predictability Analysis287

In the City of Chicago, we can predict events approximately a week in advance at the spatial resolution of ✝✶288

city blocks with a temporal resolution of ✝✶ day, with a false positive rate of less than ✷✵✪ and a median true289

positive rate of ✼✽✪. The predictive performance in the other cities is enumerated in Table II. While not directly290

modeled in the frequency domain, we found that the event forecasts produce very similar signatures in the291

frequency domain (See Fig. 9), when compared over the first ✶✺✵ days of each out-of-sample period (1 yr).292

Spatial Neighborhoods293

The degree of causal influence exerted by one variable (the source stream) on another (the target stream) is294

quantified by the coefficient of causal dependence (✌, see SI-Section 2). Identifying the source-target pairs for295

which the coefficient of causality is high (See Fig 10), we note that there exists a sparse set of spatial tiles296

which exert nearly all of the influence in the entire set of observed variables. Thus, observing these variables297

alone would enable us to make good event forecasts. These tiles span the expanse of the city, and a Voronoi298

decomposition based on the centers of these tiles in shown in Fig 10b. Such a decomposition demonstrates an299

algorithmic approach to choosing optimal neighborhoods for urban analysis.300

Perturbation Analysis301

We experimented with positive and negative perturbations to both violent and property crime rates ranging from ✶302

to ✶✵✪ of observed rates. Response to perturbed crime rates was measured as the relative change from nominal303

baseline in estimated time-average for the predicted event frequencies ✶ week in the future, corresponding to304

violent and property crimes and number of arrests.305

Results from our perturbation experiments shed light both on the stability characteristics of crime in Chicago,306

and further allowed us to look for evidence of biased police enforcement responses under stress. Under stress,307

well-off neighborhoods tend to drain resources disproportionately from disadvantaged locales (See Fig. 3). For308

economically well-off neighborhoods in the bottom ✷✺✪ of the hardship index are much more likely to see a near309

-proportional increase (✙ ✶✺✪) in law enforcement response, measured by the number or predicted arrests on310

a ✶✵✪ increase in crime rates (See Fig. 3, panels c and d, which show how regions with increased enforcement311

response are concentrated in well-off neighborhoods), while the rest of the city see a drop in predicted response312

of about twice the magnitude (❃ ✸✵✪). Increased crimes causes enforcement resources to be drained from313

disadvantaged neighborhoods to support their better socioeconomic counterparts. We performed multi-variable314

linear regression analysis to evaluate the question in another way. Here we regressed violent and property crime315

rates, independently, on the variables listed in (Fig. 3b), including a slope intercept variable in each model. In both316

models, the hardship index exhibits a strong, negative influence on changes in arrest rate from perturbations that317

increase violent and the property crime rates, which contradicts what might be expected in the absence of bias.318

Poorer neighborhoods have more crime and so these socio-economic indicators should contribute positively319

to the arrest rate with increasing crime. These patterns were replicated in our perturbation experiments for all320

preceding years we analyzed (2014 through 2017, See Fig 6 and 7). Response measured in the property an321

violent crimes, and in the associated arrests from perturbations is detailed in Fig 5.322



TABLE I
CRIME EVENT LOG INFORMATION FOR CITIES CONSIDERED

Atlanta Austin Detroit Los Angeles Philadelphia
San
Francisco

Chicago

no. of
variables✶

✺✶✵ ✶✵✽✷ ✶✶✻✶ ✸✷✽✼ ✶✵✸✼ ✾✼✺ ✸✽✷✻

temporal
resolution

✷ days ✶ day ✶ day ✶ day ✶ day ✶ day ✶ day

bounding
box of
modeled
region

✸✸✿✻✺✍N,
✸✸✿✽✻✍N,
✽✹✿✺✹✍W,
✽✹✿✸✶✍W

✸✵✿✶✹✍N,
✸✵✿✹✽✍N,
✾✼✿✽✾✍W,
✾✼✿✻✸✍W

✹✷✿✸✵✍N,
✹✷✿✹✺✍N,
✽✸✿✷✽✍W,
✽✷✿✾✶✍W

✸✸✿✼✶✍N,
✸✹✿✸✸✍N,
✶✶✽✿✻✺✍W,
✶✶✽✿✶✻✍W

✸✾✿✽✽✍N,
✹✵✿✶✷✍N,
✼✺✿✷✼✍W,
✼✹✿✾✻✍W

✸✼✿✼✶✍N,
✸✼✿✽✶✍N,
✶✷✷✿✺✶✍W,
✶✷✷✿✸✻✍W

✹✶✿✻✹✍N,
✹✷✿✵✻✍N,
✽✼✿✽✽✍W,
✽✼✿✺✷✍W

spatial
resolution

✾✽✸✵ ✂ ✾✽✸✵ ✾✽✸✵ ✂ ✾✽✸✵ ✾✽✸✵ ✂ ✾✽✸✵ ✾✽✸✵ ✂ ✾✽✸✵ ✾✽✸✵ ✂ ✾✽✸✵ ✾✽✸✵ ✂ ✾✽✸✵ ✾✺✶✵ ✂ ✶✵✵✻✵

Spatial
exclusion
threshold✷

✷✿✺✪ ✷✿✺✪ ✷✿✺✪ ✷✿✺✪ ✺✿✵✪ ✷✿✺✪ ✺✿✵✪

training
period

14/01/01-
18/12/31

16/01/01-
18/12/31

12/01/01-
14/12/31

16/01/01-
18/12/31

16/01/01-
18/12/31

14/01/01-
16/12/31

14/01/01-
16/12/31

test period
19/01/01-
19/07/20

19/01/01-
19/04/11

15/01/01-
15/04/11

19/01/01-
19/04/11

19/01/01-
19/04/11

17/01/01-
17/04/11

17/01/01-
17/04/11

prediction
horizon

✻ days ✸ days ✸ days ✸ days ✸ days ✸ days ✼ days

violent
crime stat.

event count
✷✻✹✾, rate
✸✿✾✽✪

event count
✷✵✶✸✷, rate
✺✿✹✺✪

event count
✷✵✾✷✷, rate
✸✿✼✷✪

event count
✼✷✸✺✺, rate
✹✿✽✸✪

event count
✸✸✽✵✸, rate
✽✿✶✶✪

event count
✷✸✸✶✼, rate
✼✿✶✻✪

event count
✶✼✾✷✼✹, rate
✼✿✼✪

property
crime stat.

event count
✷✸✺✷✷, rate
✹✿✺✶✪

event count
✽✽✾✷✾, rate
✻✿✷✷✪

event count
✸✾✽✹✵, rate
✸✿✸✵✪

event count
✷✵✺✹✸✺, rate
✺✿✹✾✪

event count
✽✺✻✽✸, rate
✾✿✵✷✪

event count
✶✾✼✽✸✺, rate
✶✷✿✽✸✪

event count
✷✻✸✻✻✶, rate
✼✿✵✪

data source
opendata.
atlantapd.org

data.
austintexas.
gov

data.
detroitmi.gov

data.lacity.org
www.
opendata♥
philly.org

data.sfgov.
org

data.
cityofchicago.
org

✶ No. of variables indicates the total number of time series considered for violent and property crimes.
✷ Tiles with less than threshold event-rate were excluded.

TABLE II
PREDICTION PERFORMANCE WITH GRANGER NET FOR SEVEN US CITIES

city
property crimes violent crimes

median AUC accuracy② median AUC accuracy

Atlanta ✵✿✾✵ ✵✿✽✹ ✵✿✽✽ ✵✿✽✹
Austin ✵✿✽✼ ✵✿✽✷ ✵✿✽✽ ✵✿✽✸
Detroit ✵✿✾✵ ✵✿✽✻ ✵✿✽✾ ✵✿✽✹

Philadelphia ✵✿✽✼ ✵✿✽✶ ✵✿✽✼ ✵✿✽✶
Los Angeles ✵✿✽✹ ✵✿✽✸ ✵✿✽✹ ✵✿✽✸

San Francisco ✵✿✽✻ ✵✿✽✵ ✵✿✽✻ ✵✿✽✶
Chicago ✵✿✽✼ ✵✿✾✸ ✵✿✽✼ ✵✿✾✹

② Accuracy calculated with sensitivity✂frequency✰specificity✂✭✶� frequency✮.

We also carried out similar perturbation analyses for the other cities, and observed that with increasing poverty323

we have expected increase of observed crime rates, but an unexpected decrease in violent and property crimes324

after a 5-10% simulated uptick in either category of crimes (See Fig. 4).325

Naive Baselines: Autoregressive Integrated Moving Average (ARIMA) Models326

To explore the predictive ability of naive baseline models on our datasets, we consider four ARIMA? configu-327

rations with lag orders ♣ ❂ ✺ and ✶✵, numbers of differencing ❞ ❂ ✶ and ✷, and the window of moving average328

q ❂ ✵. Let ②t be the series we want to model and ②✵t be ②t differenced by ❞ times, the ARIMA✭♣❀ ❞❀ q✮ models329

series ②✵t by330

②✵t ❂ ❝✰ ✣✶②
✵
t�✶ ✰ ✁ ✁ ✁ ✰ ✣♣②

✵
t�♣ ✰ ✒✶✧t�✶ ✰ ✁ ✁ ✁ ✰ ✒q✧t�q ✰ ✧t (1)



TABLE III
NAIVE BASELINE RESULTS: MEAN AUC ACHIEVED WITH ARIMA MODELS

city ARIMA✭✺❀ ✶❀ ✵✮ ARIMA✭✶✵❀ ✶❀ ✵✮ ARIMA✭✺❀ ✷❀ ✵✮ ARIMA✭✶✵❀ ✷❀ ✵✮

Atlanta ✵✿✻✺ ✵✿✻✻ ✵✿✻✷ ✵✿✻✻
Austin ✵✿✻✺ ✵✿✻✽ ✵✿✻✸ ✵✿✻✼
Detroit ✵✿✺✾ ✵✿✻✷ ✵✿✺✼ ✵✿✻✶

Philadelphia ✵✿✻✹ ✵✿✻✺ ✵✿✻✸ ✵✿✻✺
Los Angeles ✵✿✻✹ ✵✿✻✼ ✵✿✻✶ ✵✿✻✻

San Francisco ✵✿✻✽ ✵✿✼✵ ✵✿✻✻ ✵✿✻✾
Chicago ✵✿✼✵ ✵✿✼✶ ✵✿✻✼ ✵✿✻✾

where ✣✶❀ ✿ ✿ ✿ ❀ ✣♣ and ✒✶❀ ✿ ✿ ✿ ❀ ✒q are the coefficients to be fitted. In Eq. (1), ②✵t�❦s are the historical values of

②✵t whose inclusion models the influence of past values on the current value (autoregression), and ✧t�❦s are

the white noise terms whose inclusion models the dependence of current value against current and previous

(observed) white noise error terms or random shocks (moving average). Specifically, we use the following four

models for the earthquake and the crime datasets

②
✭✶✮
t ❂ ❝✰ ✣✶②

✵
t�✶ ✰ ✁ ✁ ✁✰ ✣✺②

✵
t�✺ (2)

②
✭✶✮
t ❂ ❝✰ ✣✶②

✵
t�✶ ✰ ✁ ✁ ✁✰ ✣✺②

✵
t�✶✵ (3)

②
✭✷✮
t ❂ ❝✰ ✣✶②

✵
t�✶ ✰ ✁ ✁ ✁✰ ✣✺②

✵
t�✺ (4)

②
✭✷✮
t ❂ ❝✰ ✣✶②

✵
t�✶ ✰ ✁ ✁ ✁✰ ✣✺②

✵
t�✶✵ (5)

where ②
✭❞✮
t is ②t different by ❞ times (②

✭✶✮
t ❂ ②t � ②t�✶ and ②

✭✷✮
t ❂ ②t � ✷②t�✶ ✰ ②t�✷). For simple benckmarking,331

we apply the ARIMA model to each individual time series, which means the predictive model is trained without332

exogenous variables. For the implementation, we use the Python statsmodels package? , and the result is333

shown in Tab. III. The inadequate performance of ARIMA may be due to 1) the use of a single data stream334

limits the ability of ARIMA to capture the interplay between co-evoluting processes, and 2) a pre-determined lag335

order fails to capture the possibly varying temporal memory of individual processes.336
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Algorithm 1: Granger Net

Data:
✎ a set of sequence ❢①✐ ✿ ✐ ❂ ✶❀ ✿ ✿ ✿ ❀ ◆❣ of length ♥;
✎ a hyperparameter ✵ ❁ ✧ ❁ ✶;
✎ a model inference length ♥✵ ❁ ♥;
✎ a maximal delay ✁max;
✎ a threshold coefficient of causal dependence ✌✵ for admissible models;

Result: A set of XPFSA models and a set of scalar weights for each target r ✷ ❢✶❀ ✿ ✿ ✿ ❀ ◆❣.
/* Infer models */

1 Let ▼r ❂ ❀ be the set of admissible models for each target r ✷ ❢✶❀ ✿ ✿ ✿ ❀ ◆❣;
2 for each delay ✁ ❂ ✶❀ ✿ ✿ ✿ ❀✁max do
3 for each source s ❂ ✶❀ ✿ ✿ ✿ ❀ ◆ and target r ❂ ✶❀ ✿ ✿ ✿ ❀ ◆ do

4 Let ①in ❂ ✭①s✮
♥✵�✁
✶ ;

5 Let ①out ❂ ✭①r✮
♥✵
✁✰✶;

6 Calculate PFSA ● ❂ GenESeSS ✭①in❀ ✧✮;
7 Calculate XPFSA ❍s

r❀✁ ❂ xGenESeSS ✭①out❀ ✧✮;
8 Let ✌sr❀✁ ❂ coefCausalDependence✭●❀❍s

r❀✁✮;
9 if ✌sr❀✁ ✕ ✌✵ then

10 Let ▼r ❂▼r ❬
✟
❍s

r❀✁

✠
;

/* Learn scalar weights */

11 for each target r ❂ ✶❀ ✿ ✿ ✿ ❀ ◆ do

12 Let ■r ❂
✟
✭s❀✁✮ ✿ there is a model ❍s

r❀✁ ✷▼r

✠
;

13 for each timestamp t ❂ ✶❀ ✿ ✿ ✿ ❀ ♥� ♥✵ do
14 Let xt be a vector with index set ■r;
15 for each pair ✭s❀✁✮ ✷ ■r do
16 Let ①in the length ❧ sub-sequence of ①s that ends in the ✭♥✵ ✰ t�✁✮-th entry;

17 Let the entry of xt❬s❀✁❪ ❂ predict
�
❍s

r❀✁❀ ①in

✁
;

18 Let ②t ❂ ①r❬♥✵ ✰ t❪;
19 Let ❳ the matrix with the t-th row being xt;
20 Let y be the vector with the t-th entry being ②t;
21 Initialize a suitable regressor Reg;

22 Get scalar weights wr ❂
�
✇s

r❀✁

✁
✭s❀✁✮✷■r

❂ Reg ✭❳❀y✮;

23 return ❢✭▼r❀wr✮ ✿ r ❂ ✶❀ ✿ ✿ ✿ ❀ ◆❣;

Algorithm 2: GenESeSS

Data: A sequence ① over alphabet ✝, ✵ ❁ ✧ ❁ ✶
Result: State set ◗, transition map ✍, and transition probability ❡✙
/* Step One: Approximate ✧-synchronizing sequence */

1 Let ▲ ❂
✝
❧♦❣❥✝❥ ✶❂✧

✞
;

2 Calculate the derivative heap ❉①
✧ equaling

✟
❫✣①② ✿ ② is a sub-sequence of ① with ❥②❥ ✔ ▲

✠
;

3 Let ❈ be the convex hull of ❉①
✧ ;

4 Select ①✵ with ❫✣①①✵ being a vertex of ❈ and has the highest frequency in ①;
/* Step Two: Identify transition structure */

5 Initialize ◗ ❂ ❢q✵❣;
6 Associate to q✵ the sequence identifier ①id

q✵ ❂ ①✵ and the probability vector ❞q✵ ❂ ❫✣①①✵ ;

7 Let ❡◗ be the set of states that are just added and initialize it to be ◗;

8 while ❡◗ , ❀ do
9 Let ◗new ❂ ❀ be the set of new states;

10 for ✭q❀ ✛✮ ✷ ❡◗✂ ✝ do

11 Let ① ❂ ①id
q and ❞ ❂ ❫✣①①✛;

12 if ❦❞� ❞q✵❦✶ ❁ ✧ for some q✵ ✷ ◗ then
13 Let ✍✭q❀ ✛✮ ❂ q✵;
14 else
15 Let ◗new ❂ ◗new ❬ ❢qnew❣ and ◗ ❂ ◗ ❬ ❢qnew❣;
16 Associate to qnew the sequence identifier ①id

qnew
❂ ①✛ and the probability vector ❞qnew ❂ ❞;

17 Let ✍✭q❀ ✛✮ ❂ qnew;

18 Let ❡◗ ❂ ◗new;
19 Take a strongly connected subgraph of the labeled directed graph defined by ◗ and ✍, and denote the vertex set of

the subgraph again by ◗;
/* Step Three: Identify transition probability */

20 Initialize counter ◆ ❬q❀ ✛❪ for each pair ✭q❀ ✛✮ ✷ ◗✂ ✝;
21 Choose a random starting state q ✷ ◗;
22 for ✛ ✷ ① do
23 Let ◆ ❬q❀ ✛❪ ❂ ◆ ❬q❀ ✛❪ ✰ ✶;
24 Let q ❂ ✍ ✭q❀ ✛✮;
25 Let ❡✙ ✭q✮ ❂

q

✭◆ ❬q❀ ✛❪✮✛✷✝
y

;
26 return ◗, ✍, ❡✙;
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Algorithm 3: xGenESeSS

Data: A sequence ①in over alphabet ✝in, a sequence ①out over alphabet ✝out, and ✵ ❁ ✧ ❁ ✶
Result: State set ❘, transition map ✑, and output probability ✤
/* Step One: Approximate ✧-synchronizing sequence */

1 Let ▲ ❂
✝
❧♦❣❥✝in❥

✶❂✧
✞
;

2 Calculate cross derivative heap ❉①in❀①out
✧ equaling

✟
❫✣①in❀①out
② ✿ ② is a sub-sequence of ①in with ❥②❥ ✔ ▲

✠
;

3 Let ❈ be the convex hull ❉①in❀①out
✧ ;

4 Select ①✵ with ❫✣①in❀①out
①✵ being a vertex of ❈ and has the highest frequency in ①;

/* Step Two: Identify transition structure */

5 Initialize ❘ ❂ ❢r✵❣;

6 Associate to r✵ the sequence identifier ①id
r✵ ❂ ①✵ and the probability vector ✤ ✭r✵✮ ❂ ❫✣①in❀①out

①✵ ;

7 Let ❡❘ be the set of states that are just added and initialize it to be ❘;

8 while ❡❘ , ❀ do
9 Let ❘new ❂ ❀ be the set of new states;

10 for ✭r❀ ✛✮ ✷ ❡❘✂ ✝in do

11 Let ① ❂ ①id
r and ❞ ❂ ❫✣①in❀①out

①✛ ;
12 if ❦❞� ✤ ✭r✵✮❦✶ ❁ ✧ for some r✵ ✷ ❘ then
13 Let ✑✭r❀ ✛✮ ❂ r✵;
14 else
15 Let ❘new ❂ ❘new ❬ ❢rnew❣ and ❘ ❂ ❘ ❬ ❢rnew❣;

16 Associate to rnew the sequence identifier ①id
rnew

❂ ①✛ and the probability vector ✤ ✭rnew✮ ❂ ❞;
17 Let ✑✭r❀ ✛✮ ❂ rnew;

18 Let ❡❘ ❂ ❘new;
19 Take a strongly connected subgraph of the labeled directed graph defined by ❘ and ✑, and denote the vertex set of

the subgraph again by ❘;
/* Step Three: Identify output probability */

20 Initialize counter ◆ ❬r❀ ✜ ❪ for each pair ✭r❀ ✜ ✮ ✷ ❘✂ ✝out;
21 Choose a random starting state r ✷ ❘;
22 for ✐ ✷ ✶❀ ✿ ✿ ✿ ❀ ❥①in❥ do
23 Let ✛✐ be the ✐-th symbol in ①in and ✜✐ be the ✐-th symbol in ①out;
24 Let ◆ ❬r❀ ✜✐❪ ❂ ◆ ❬r❀ ✜✐❪ ✰ ✶;
25 Let r ❂ ✑ ✭r❀ ✛✐✮;

26 Let ✤ ✭r✮ ❂
r

✭◆ ❬r❀ ✜ ❪✮✜✷✝out

z

;

27 return ❘, ✑, ✤;
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2 THEORY OF PROBABILISTIC AUTOMATA

Granger Net is assembled from local models which are, in general, crossed probabilistic automata (XPFSA).

The construction of a Granger Net consists of two steps: 1) local model generation and network pruning and 2)

local model aggregation for comprehensive prediction. Event prediction is accomplished by aggregating these local

activations via a local regressor. No global optimization of these aggregation function is acrried out.

The model generation step of Granger Net is accomplished by the algorithms GenESeSS (See Algorithm 2) and

xGenESeSS (See Algorithm 3). xGenESeSS produces XPFSA models that captures how the history of a source

process influences the future of a target process. The Granger Net construction is described in Algorithm 1, and takes

as input a set ❢①s ✿ s ✷ ❙❣ of length-♥ time series, hyperparameters ✧ and ♥✵ ❁ ♥ for local model inference, ✁max for

maximum time delay, and ✌✵ for thresholding admissible models. For each target sequence ①r, Granger Net outputs a

set of admissible models ▼r with a scalar weight for each model in ▼r via model inference and pruning (line 1-10)

and training of the aggregation weights (line 11-22).

Step 1: Model inference and pruning

The Granger Net framework models the influence from a source time series ①s on a target time series ①r at a particular

time delay ✁ by an XPFSA ❍s
r❀✁ (line 7). Thus, we infer ❥❙❥✁max XPFSA models for each ①r which yields ❥❙❥✷✁max

models in total. Since the number of XPFSA models increases quadratically with the number of time series and strength

of the links may vary, pruning low-performing models early is important for parsimony. Granger Net rejects models by

thresholding on the coefficient of causal dependence ✌sr❀✁ of model ❍s
r❀✁ (line 8), which measures the strength of

dependence of the output sequence on the input one. More specifically, we have

✌sr❀✁ ❂ ✶�
uncertainty of the next output in ①r with observation of ①s

uncertainty of the next output in ①r
(1)

✌ can be evaluated from the synchronous composition of the PFSA that models the input process (line 6) and the

XPFSA that models the causal influence. Granger Net retains the model ❍s
r❀✁ if and only if ✌sr❀✁ is greater than a

pre-specified threshold ✌✵. At the conclusion of Step 1, Granger Net returns an admissible set of models

▼r ❂
✟
❍s
r❀✁ ✿ ✌sr❀✁ ❃ ✌✵

✠
(2)

for each r ✷ ❙.

Step 2: Train linear weights

In this step, we integrate the local models in ①r ’s admissible set for forecasting events in ①r. To do this, Granger Net

trains a linear coefficient ✦sr❀✁ for each ❍s
r❀✁ ✷▼r (line 22) so that the final prediction for ①r at time step ❤ is equal to❳

❍s

r❀✁
✷▼r

✦st❀✁❍
s
r❀✁

✏
✭①s✮

❤�✁
✑
❀ (3)

where ✭①s✮
❤�✁

is the truncation of ①s at ❤�✁. To compute the coefficients, we solve a regression problem Reg✭❳❀y✮
(line 22) for each r ✷ ❙ with the predictor variables being predictions xt❬s❀✁❪ obtained by running each sequence

✭①s✮
♥✵✰t�✁ through ❍s

r❀✁ (line 17), and the outcome variable being ①r❬♥✵ ✰ t❪, value of ①r at time ♥✵ ✰ t (line 18).

Hence, the ❳ matrix is the ✭♥ � ♥✵✮ ✂ ❥▼r❥ matrix with the entry indexed by t❀ ✭s❀✁✮ given by xt❬s❀✁❪ and y, the

✭♥ � ♥✵✮-dimensional vector with the entry indexed by t given by ①r❬♥✵ ✰ t❪. We can solve for the linear weights with

any standard regressor.

Inference Algorithms

On line 6 and 7 of Algorithm 1, Granger Net calls subroutine xGenESeSS, which infers XPFSA as models of cross-

dependencies between processes. Here, we establish the correctness of GenESeSS.

The inference algorithm for PFSA is called GenESeSS for Generator Extraction Using Self-similar Semantics. The PFSA

model is based on the concept of the causal state. A dynamical system reaches the same causal state via distinct paths

if the futures are statistically indistinguishable. More precisely, each process over an alphabet ✝ of size ♠ gives rise

naturally to an ♠-ary tree with the nodes at level ❞ being sequences of length ❞, and the edge from the node ① to ①✛,

✛ ✷ ✝, labeled by Pr✭✛❥①✮ – the probability of observing ✛ as the next output after ①. By the definition of causal state, if

two subtrees are identical with respect to edge labels, then their roots are sequences that lead the system to the same

causal state. Identifying all the roots of identical subtrees induces a finite automaton structure whose unique strongly

connected component is the generating model of the process.

Definition 1 (Probabilistic Finite-State Automaton (PFSA)). A PFSA ● is a quadruple ✭◗❀✝❀ ✍❀ ❡✙✮, where ◗ is a finite

set, ✝ is a finite alphabet, ✍ ✿ ◗ ✂ ✝ ✦ ✝ is called the transition map, and ❡✙ ✿ ◗ ✦ P✝, where P✝ is the space of

probability distributions over ✝, is called the transition probability.

Step 2 of Algorithm 2 (line 5-19) is an implementation this subtree “stitching” approach under finiteness of input data.
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Note that the criterion for “stitching” two subtrees with roots ① and ①✵ is that their edge labels are identical for all depths,

which translates to ♣✭②❥①✮ ❂ ♣✭②❥①✵✮ for sequence ② of all lengths. The criterion is not verifiable with finite data, and

hence GenESeSS identifies two subtrees if they agree on depth one. Defining symbolic derivative ✣① to be the vector

with the entry indexed by ✛ given by ♣✭✛❥①✮, GenESeSS identifies ① and ①✵ if ✣① ❂ ✣①✵ . This approach works well under

the assumption that the target PFSA is in general position, meaning that different causal states have distinct symbolic

derivatives. In practice, GenESeSS uses empirical symbolic derivative defined below to approximate ✣①. Let ① be an

input sequence of finite length, the empirical symbolic derivative ❫✣①② of a sub-sequence ② of ① is a probability vector

with the entry indexed by ✛ given by

❫✣①②✭✛✮ ❂
number of ②✛ in ①

number of ② in ①
(4)

GenESeSS identifies two sequences (line 12) if their empirical symbolic derivatives are within an ✧-neighborhood of

each other for certain ✧ ❃ ✵.

For simplicity, we first illustrate how GenESeSS solves the transition structure of the target PFSA from a sample path ①
generated from a process of Markov order ❦. Assuming the ①✵ produced by Step 1 (line 4) is ✕, the empty sequence,

GenESeSS starts by calculating ❫✣①✕, ✐✿❡✿, the empirical distribution on ✝, and records ✕ as the identifier of the first state.

Then, GenESeSS appends ✕ with each ✛ ✷ ✝, and calculates ❫✣①✛. By the general position assumption and assuming ①

is long enough, with high probability, no ❫✣①✛ is within an ✧-neighborhood of ❫✣①✛✵ for ✛ , ✛✵, and hence each ✛ is recorded

as the identifier for a new state. In fact, GenESeSS will keep on appending symbols to identifiers of stored states and

adding new states until it reaches a sequence of length ❦✰✶. Assuming ② ❂ ✛✶ ✁ ✁ ✁✛❦✛❦✰✶, since the process is of order

❦, we have ✣② ❂ ✣③ for ③ ❂ ✛✷ ✁ ✁ ✁✛❦✰✶, and hence, with high probability, ❫✣①② and ❫✣①③ can be within an ✧-neighborhood

of each other given long enough input ①. In this case, GenESeSS identifies the state represented by ② with that of ③. In

fact, GenESeSS will identify all states represented by sequences of length ❦ ✰ ✶ to some previously-stored states. And

since no new states can be found, GenESeSS exits the loop on line 8 after iteration ❦✰✶. Taking the strongly connected

component on line 19, GenESeSS gets the correct transition structure.

However, not all processes generated by PFSA have finite Markov order. For such cases, Step 2 of GenESeSS will

never exit in theory, since there exists no ♥ ✷ N such that every causal state is visited for sequences with length ✔ ♥.

And if we implement an artificial exit criterion, the model inferred might be unnecessarily large, and have hard-to-model

approximations. We address this issue via the notion of synchronization – the ability to identify that we are localized or

synchronized to a particular state despite being uncertain of the initial state.

In Step 1 of Algorithm 2 (line 1-4), GenESeSS finds an almost synchronizing sequence, which allows GenESeSS to distill

a structure that is similar to that of the finite Markov order cases, and thus carry out the subtree “stitching” procedure

described before. A sequence ① is synchronizing if all sequences that end with the suffix ① terminates on the same

causal state. A process is synchronizable if it has a synchronizing sequence, and a PFSA is synchronizable if the

process it generates is synchronizable. The structure of the “graph” of a perfectly synchronizable PFSA is that of a

co-final automata1.

A sequence ① is ✧-synchronizing 2 to the state q if the distribution ⑥① on the state set ◗ induced by ① satisfies

❦⑥① � eq❦✶ ❁ ✧, where eq is the base vector with ✶ on the entry indexed by q and ✵ elsewhere. The importance of ✧-

synchronizing sequence is twofold: 1) since ✣❚① ❂ ⑥❚①
❡✆, where ❡✆ is the ❥◗❥✂ ❥✝❥ matrix with the row indexed by q given

by ❡✙✭q✮, a ⑥① close to eq give rise to a ✣① close to ❡✙✭q✮. And 2) although sequences prefixed by an ✧-synchronizing

sequence to a state q may not remain ✧-synchronizing to state q, they are close to q on average.

To find an almost synchronizing sequence algorithmically2, GenESeSS first calculates the convex hull of symbolic

derivatives of subsequences of ① up to length ▲ (line 1-3), and then selects a sequence ①✵ whose symbolic derivative

is a vertex of the convex hull (line 4). Since the convex hull of
✟
✣① ✿ ① ✷ ✝▲

✠
is a linear projection of the convex hull✟

⑥●✭①✮ ✿ ① ✷ ✝▲
✠

via ❡✆, we can expect sequence ① with ✣① being a vertex of the convex hull of
✟
✣① ✿ ① ✷ ✝▲

✠
to be

a good candidate for an almost synchronizing sequence.

The corresponding inference algorithm for XPFSA is called xGenESeSS, which takes as input two sequences ①in, ①out,

and a hyperparameter ✧, and outputs an XPFSA in a manner very similar to the inference algorithm of PFSA.

While a PFSA models how the past of a time series influences its own future, a XPFSA models how the past of an

input time series influences the future of an output time series. Hence, while in the SSC algorithm of PFSA, we identify

sequences if they lead to futures that are statistically indistinguishable, in the SSC algorithm of XPFSA, we identify

sequences if they lead to the same future distribution of the output.

Definition 2 (Crossed Probabilistic Finite-State Automaton (XPFSA)). A crossed probabilistic finite-state automaton

is specified by a quintuple ✭✝in❀ ❘❀ ✑❀ ✝out❀ ✤✮, where ✝in is a finite input alphabet, ❘ is a finite state set, ✑ is a partial

function from ❘ ✂ ✝in to ❘ called transition map, ✝out is a finite output alphabet, and ✤ is a function from ❘ to P✝out

called output probability map, where P✝out
is the space of probability distributions over ✝out. In particular, ✤✭r❀ ✜ ✮ is the

probability of generating ✜ ✷ ✝out from a state r ✷ ❘.

Note that a XPFSA has no transition probabilities defined between states as a PFSA does. The XPFSA in the example
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has a binary input alphabet and an output alphabet of size ✸. The bar charts next to the ✹ states of the XPFSA indicate

the output probability distributions. To generate a sample path, an XPFSA requires an input sequence over its input

alphabet.

Similar to the PFSA construction approach, here we compute the cross symbolic derivative, which is the ordered tuple

Pr✭✜ ❥①✮, with ✜ ✷ ✝out and a sequence ① over ✝in. We compute the empirical approximation of the cross symbolic

derivative from sequences ①in and ①out as:

❫✣①in❀①out
② ✭✜ ✮ ❂

number of ✜ in ①out after ② transpires in ①in

number of sub-sequence ② in ①in

(5)

Thus, xGenESeSS is almost identical to GenESeSS except that, in Step 1, xGenESeSS finds an almost synchronizing

sequence based on cross symbolic derivatives, and in Step 2, identifies the transition structure based on the sim-

ilarity between cross symbolic derivatives. Arguments for establishing the effectiveness of GenESeSS carry over to

xGenESeSS with empirical symbolic derivative replaced by empirical cross symbolic derivative.

3 SOFTWARE AVAILABILITY & REPOSITORY

Software for the cynet implementation, with instructions for installation and quick-start examples, is available at

https://pypi.org/project/cynet/
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Figures

Figure 1

Crime Data & Modeling Approach. a and b show the recorded infractions within the 2 week period
between April 1 and 15 in 2017. Plate c illustrates our modeling approach: We break city into small
spatial tiles approximately 1.5 times the size of an average city block, and compute models that capture



multi-scale dependencies between the sequential event streams recorded at distinct tiles. In this paper, we
treat violent and property crimes separately, and show that these categories have intriguing cross-
dependencies. Plate d illustrates our modeling approach. For example, to predict property crimes at some
spatial tile r, we proceed as follows: Step 1) we infer the probabilistic transducers that estimate event
sequence at r by using as input the sequences of recorded infractions (of different categories) at
potentially all remote locations (s; s 0 ; s 00 shown), where this predictive in�uence might transpire over
different time delays (a few shown on the edges between s and r). Step 2) Combine these weak
estimators linearly to minimize zero-one loss. The inferred transducers can be thought of as inferred local
activation rules, which are then linearly composed, reversing the approach of linearly combining input
and then passing through �xed activation functions in standard neural net architectures. The connected
network of nodes (variables) with probabilistic transducers on the edges comprises the Granger Network.



Figure 2

Predictive Performance of Granger Nets. a an b illustrate the out-of-sample area under the receiver
operating characteristics curve (AUC) for predicting violent and property crimes respectively. The
prediction is made a week in advance, and the event is registered as a successful prediction if we get a hit
within +1 day of the predicted date. c illustrates the distribution of AUC on average, individually for violent
and property crimes. Our mean AUC is close to 90%. Panels d-f shows in�uence Diffusion & Perturbation



Space. If we are able to infer a model that is predicts event dynamics at a speci�c spatial tile (the target)
using observations from a source tile + days in future, then we say the source tile is within the in�uencing
neighborhood for the target location with a delay of D. d illustrates the spatial radius of in�uence for
0.5, 1, 2 and 3 weeks, for violent (upper panel) and property crimes (lower panel). Note that the
in�uencing neighborhoods, as de�ned by our model, are large and approach a radius of 6 miles. Given
the geometry of the City of Chicago, this maps to a substantial percentage of the total area of urban
space under consideration, demonstrating that crime manifests demonstrable long-range and almost
city-wide in�uence. e illustrates the extent of a few inferred neighborhoods at time delay of at most 3
days. f illustrates the average rate of in�uence diffusion measured by number of predictive models
inferred that transduce in�uence as we consider longer and longer time delays. Note that the rate of
in�uence diffusion falls rapidly for property crimes, dropping to zero in about a week, whereas for violent
crimes, the in�uence continues to diffuse even after three weeks.



Figure 3

Estimating Bias. a illustrates the distribution of hardship index (see SI). c, d, e, and f suggest biased
response to perturbations in crime rates. With a 10% increase in violent or property crime rates, we see an
approximately a 30% decrease in arrests when averaged over the city. The spatial distribution of locations
that experience a positive vs. negative change in arrest rate reveals a strong preference favoring wealthy
locations. If neighborhoods are doing better socio-economically, increased crime predicts increased
arrests. A strong converse trend is observed in predictions for poor and disadvantaged neighborhoods,



suggesting that under stress, wealthier neighborhoods drain resources from their disadvantaged
counterparts. b illustrates this more directly via a multi-variable regression, where hardship index is seen
to make a strong negative contribution.

Figure 4

Prediction of property and violent crimes across major US cities and dependence of perturbation
response on socio-economic status of local neighborhoods. Panels a-f illustrate the AUCs achieved in six



major US cities. These cities were chosen on the basis of the availability of detailed event logs in the
public domain. All of these cities show comparably high predictive performance. Panel g illustrates the
results obtained by regressing crime rate and perturbation response against SES variables (shown here
for poverty, as estimated by the 2018 US census). We note that while crime rate typically goes up with
increasing poverty, the number of events observed one week after a positive perturbation of 5-10%
increase in crime rate is predicted to fall with increasing poverty. We suggest that this decrease is
explainable by reallocation of enforcement resources disproportionately, away from disadvantaged
neighborhoods in response to increased event rates, which leads to smaller number of reported crimes.



Figure 5

Perturbation Effects Across Variables. We see that the decrease of violent crimes from increase of
property crimes are localized in disadvantaged neighborhoods (panel g). Similarly, the decrease of
property crimes from increase of violent crimes is also localized to disadvantaged neighborhoods (panel
a), as well as the decreased violent crimes from increased arrests (panel k). We see a weaker localization
for the corresponding increases in crime rates under similar perturbations. Looking at other pairs of



variables under perturbation (rest of the panels), we generally do not see a very prominent
correspondence with the distribution of socio-economic indicators. It seems crimes (and particulalrly
violent crimes) are easier to dampen in lcales with high existing crime rates, which is desirable result. But
such conclusions are currently confounded by SES variables, and futher work is needed to investigate
these effects more thoroughly.

Figure 6

Stability of Suburban Bias over Years (Violent Crimes). We show that the nature of the perturbation
response shown in Fig. 3 in the main text holds true for earlier years as well: panels a and b correspond to
year 2014, c and d correspond to 2015 and e and f correspond to year 2016, all of which follow the same
pattern shown in Fig. 3 in the main text.



Figure 7

Stability of Suburban Bias over Years (Property Crimes). We show that the nature of the perturbation
response shown in Fig. 3 in the main text holds true for earlier years as well: panels a and b correspond to
year 2014, c and d correspond to 2015 and e and f correspond to year 2016, all of which follow the same
pattern shown in Fig. 3 in the main text.



Figure 8

Out of Sample Predictive Performance over the Years. We show that the predictive performance is very
stable, and variation in mean AUC is limited to the third place of decimal, at least when analyzing the last
few years (4 years shown).



Figure 9

Comparison of Predicted vs Actual Sample Paths in Time and Frequency Domains. Panels a, c and e
show that the predicted and actual sample paths are pretty close for different years, when compared over
the �rst 150 days of each year. Panels b, d and f show that the Fourier coe�cients match up pretty well
as well. More importantly, while our models do not explicitly incorporate any periodic elements that are
being tuned, we still manage to capture the weekly, (approximately) biweekly and longer periodic
regularities.



Figure 10

Automatic Neighborhood Decomposition Using Event Predictability Computing a biclustering on the
source-vs-target in�uence matrix (panel A) isolates a set of spatial tiles that are, on average, good
predictors for all other tiles. Using this set, we use a Voronoi decomposition of the city (Panel B), which
realizes an automatic spatial decomposition of the urban space, driven by event predictability.


