CSCI 497P/597P: Computer Vision

Announcements

Review: LeNet-5

[LeCun et al., 1998]

Conv filters were 5×5, applied at stride 1
Subsampling (Pooling) layers were 2×2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

$$
5
$$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT

[$55 \times 55 \times 96$] CONV1: 9611×11 filters at stride 4 , pad 0 [27x27x96] MAX POOL1: 3×3 filters at stride 2 [27x27×96] NORM1: Normalization layer [27×27x256] CONV2: 2565×5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3×3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13×13×384] CONV3: 3843×3 filters at stride 1, pad 1 [$13 \times 13 \times 384$] CONV4: 3843×3 filters at stride 1, pad 1 [$13 \times 13 \times 256$] CONV5: 2563×3 filters at stride 1, pad 1 [$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate $1 \mathrm{e}-2$, reduced by 10 manually when val accuracy plateaus
- L 2 weight decay $5 \mathrm{e}-4$
- 7 CNN ensemble: 18.2%-> 15.4\%

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [$55 \times 55 \times 96]$ CONV1: 9611×11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3×3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 2565×5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3×3 filters at stride 2
[13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 3843×3 filters at stride 1, pad 1 [13x13x384] CONV4: 3843×3 filters at stride 1, pad 1 [13x13x256] CONV5: 2563×3 filters at stride 1, pad 1 [$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Historical note: Trained on GTX 580 GPU with only 3 GB of memory. Network spread across 2 GPUs, half the neurons (feature maps) on each GPU.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Slide: Fei-Fei Li, Justin Johnson, \& Serena Yeung

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Slide: Fei-Fei Li, Justin Johnson, \& Serena Yeung

WENEED TO GO DEEPER

Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters! 12x less than AlexNet
- ILSVRC'14 classification winner (6.7\% top 5 error)

Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]
"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution ($1 \times 1,3 \times 3$, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depth-wise

Case Study: GoogLeNet

[Szegedy et al., 2014]
filter concatenation?

$$
28 \times 28 \times(128+192+96+256)=28 \times 28 \times 672
$$

Naive Inception module

Q: What is the problem with this? [Hint: Computational complexity]

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256
[3×3 conv, 192] $28 \times 28 \times 192 \times 3 \times 3 \times 256$ [5×5 conv, 96] 28x28x96x5x5x256
Total: 854M ops
Very expensive compute
Pooling layer also preserves feature depth, which means total depth after concatenation can only grow at every layer!

Reminder: 1x1 convolutions

Reminder: 1x1 convolutions

Case Study: GoogLeNet

[Szegedy et al., 2014]

Example: Q3:What is output size after filter concatenation?

$$
28 \times 28 \times(128+192+96+256)=\mathbf{5 2 9 k}
$$

Q: What is the problem with this? [Hint: Computational complexity]

Solution: "bottleneck" layers that use 1×1 convolutions to reduce feature depth

Naive Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]

Naive Inception module

Inception module with dimension reduction

Case Study: GoogLeNet

[Szegedy et al., 2014]

> 1x1 conv "bottleneck" layers

Naive Inception module

Inception module with dimension reduction

Case Study: GoogLeNet

[Szegedy et al., 2014]

Inception module with dimension reduction

Using same parallel layers as naive example, and adding " 1×1 conv, 64 filter" bottlenecks:

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3×3 conv, 192] $28 \times 28 \times 192 \times 3 \times 3 \times 64$
[5×5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops
Compared to 854 M ops for naive version Bottleneck can also reduce depth after pooling layer

Case Study: GoogLeNet

[Szegedy et al., 2014]

Stack Inception modules with dimension reduction on top of each other

Inception module

Case Study: GoogLeNet

[Szegedy et al., 2014]

Case Study: GoogLeNet

[Szegedy et al., 2014]

Case Study: GoogLeNet

[Szegedy et al., 2014]

Full GoogLeNet architecture

Case Study: GoogLeNet

[Szegedy et al., 2014]

Case Study: GoogLeNet

[Szegedy et al., 2014]
Full GoogLeNet architecture

Auxiliary classification outputs to inject additional gradient at lower layers (AvgPool-1x1Conv-FC-FC-Softmax)

Case Study: GoogLeNet

[Szegedy et al., 2014]

22 total layers with weights
(parallel layers count as 1 layer => 2 layers per Inception module. Don't count auxiliary output layers)

Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- 12x less params than AlexNet
- ILSVRC'14 classification winner (6.7\% top 5 error)

Inception module

WENEED TO GO DEEPER

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Slide: Fei-Fei Li, Justin Johnson, \& Serena Yeung

Case Study: ResNet

[He et al., 2015]
Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57\% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

Case Study: ResNet

[He et al., 2015]
What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Case Study: ResNet

[He et al., 2015]
What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Q: What's strange about these training and test curves?
[Hint: look at the order of the curves]
56-layer model performs worse on both training and test error-> The deeper model performs worse, but it's not caused by overfitting!

Case Study: ResNet

[He et al., 2015]
Hypothesis: the problem is an optimization problem, deeper models are harder to optimize

The deeper model should be able to perform at least as well as the shallower model.

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.

Case Study: ResNet

[He et al., 2015]
Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Case Study: ResNet

[He et al., 2015]
Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Case Study: ResNet

[He et al., 2015]
Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3×3 conv layers

Case Study: ResNet

[He et al., 2015]
Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3×3 conv layers
- Periodically, double \# of filters and downsample spatially using stride 2 (/2 in each dimension)

Case Study: ResNet

[He et al., 2015]
Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3×3 conv layers
- Periodically, double \# of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning

Case Study: ResNet

[He et al., 2015]
Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3×3 conv layers
- Periodically, double \# of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning
- No FC layers at the end (only FC 1000 to output classes)

Case Study: ResNet

[He et al., 2015]

Total depths of 34,50 , 101, or 152 layers for ImageNet

Slide: Fei-Fei Li, Justin Johnson, \& Serena Yeung

Case Study: ResNet

[He et al., 2015]

For deeper networks
(ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

Slide: Fei-Fei Li, Justin Johnson, \& Serena Yeung

Case Study: ResNet

[He et al., 2015]

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC \& COCO 2015 Competitions

- 1st places in all five main tracks
- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27\% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Slide: Fei-Fei Li, Justin Johnson, \& Serena Yeung

Comparing complexity... Inception-v4: Resnet + Inception!

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

GoogLeNet: most efficient

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

ResNet:
Moderate efficiency depending on model, highest accuracy

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

And so on and so forth...

- Dizzying number of papers since then proposing more architecture tricks and hacks.
- A couple notable examples:
- FractalNet
- DenseNet

WENEED TOGO DEEPER

Do we though?
 (open question)

Beyond ResNets...

FractalNet: Ultra-Deep Neural Networks without Residuals

[Larsson et al. 2017]

- Argues that key is transitioning effectively from shallow to deep and residual representations are not necessary
- Fractal architecture with both shallow and deep paths to output
- Trained with dropping out sub-paths
- Full network at test time

Figures copyright Larsson et al., 2017. Reproduced with permission.

Beyond ResNets...

Densely Connected Convolutional Networks

[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse

And so on and so forth...

- So we've beat the crap out of ImageNet... what now?

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

And so on and so forth...

- So we've beat the crap out of ImageNet... what now?
- Can we do image classification on other datasets?
- Can we do things other than image classification?

And so on and so forth...

- So we've beat the crap out of ImageNet... what now?
- Can we do image classification on other datasets?
- Can we do things other than image classification?

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning

"You need a lot of data if you want to train/so CNNs"

Transfer Learning with CNNs

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Transfer Learning with CNNs

2. Small Dataset (C classes)
3. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014
3. Bigger dataset

Figure: Razavian et al.: CNN Features off-the-shelf: an Astounding Baseline for Recognition https://arxiv.org/pdf/1403.6382.pdf

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Image Captioning: CNN + RNN

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Object Detection
(Fast R-CNN)

CNN pretrained on ImageNet

Image Captioning: CNN + RNN

box

Bouncing box regressors

External proposal algorithm
e.g. selective search

And so on and so forth...

- So we've beat the crap out of ImageNet... what now?
- Can we do image classification on other datasets?
- Can we do things other than image classification?

Other Computer Vision Tasks

Other Computer Vision Tasks

Semantic Segmentation

GRASS, CAT,

No objects, just pixels

Classification

+ Localization

Object
Detection

Single Object

CAT

Instance Segmentation

DOG, DOG, CAT

Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

This image is CCO public domain

Semantic Segmentation Idea: Sliding Window

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation Idea: Sliding Window

 reusing shared features between overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Semantic Segmentation Idea: Fully Convolutional

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Semantic Segmentation Idea: Fully Convolutional

Downsampling:
Pooling, strided
convolution

Input:
$3 \times H \times W$

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

High-res:
$D_{1} \times H / 2 \times W / 2$

High-res:
$D_{1} \times H / 2 \times W / 2$

Upsampling: ???

Predictions: HxW

In-Network upsampling: "Unpooling"

Nearest Neighbor

\[\)| 1 | 2 |
| :--- | :--- |
| 3 | 4 |\longrightarrow| 1 | 1 | 2 | 2 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 2 |
| 3 | 3 | 4 | 4 |
| 3 | 3 | 4 | 4 |

\]

Input: 2×2
Output: 4×4
"Bed of Nails"

1	2					
3	4	\longrightarrow	1	0	2	0
:---:	:---:	:---:	:---:			
0	0	0	0			
3	0	4	0			
0	0	0	0	\longrightarrow		

Input: 2×2

In-Network upsampling: "Max Unpooling"

Max Pooling
Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1
7	3	4	8

Input: 4×4

Output: 2×2

Max Unpooling
Use positions from pooling layer

1	2
3	4

Input: 2×2

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Output: 4×4

Corresponding pairs of downsampling and upsampling layers

Learnable Upsampling: Transpose Convolution

Recall:Typical 3×3 convolution, stride 1 pad 1

Input: 4×4

Output: 4×4

Learnable Upsampling: Transpose Convolution

Recall: Normal 3×3 convolution, stride 1 pad 1

Input: 4×4

Dot product between filter and input

Output: 4×4

Learnable Upsampling: Transpose Convolution

Recall: Normal 3×3 convolution, stride 1 pad 1

Input: 4×4

Output: 4×4

Learnable Upsampling: Transpose Convolution

Recall: Normal 3×3 convolution, stride 2 pad 1

Input: 4×4

Output: 2×2

Learnable Upsampling: Transpose Convolution

Recall: Normal 3×3 convolution, stride 2 pad 1

Input: 4×4

Output: 2×2

Learnable Upsampling: Transpose Convolution

Recall: Normal 3×3 convolution, stride 2 pad 1

Filter moves 2 pixels in the input for every one pixel in the output

Stride gives ratio between movement in input and output

Output: 2×2

Learnable Upsampling: Transpose Convolution

$$
3 \times 3 \text { transpose convolution, stride } 2 \text { pad } 1
$$

Output: 4×4

Learnable Upsampling: Transpose Convolution

3×3 transpose convolution, stride 2 pad 1

Learnable Upsampling: Transpose Convolution

Learnable Upsampling: Transpose Convolution

Learnable Upsampling: Transpose Convolution

Other names:
-Deconvolution (bad) -Upconvolution
-Fractionally strided convolution
-Backward strided convolution
3×3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in the output for every one pixel in the input

Stride gives ratio between movement in output and

Output: 4×4

Sum where output overlaps

Input: 2×2

Learnable Upsampling: 1D Example

Output

Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Need to crop one pixel from output to make output exactly $2 x$ input

2D Object Detection

3D Object Detection

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? NO Background? YES

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES
Cat? NO
Background? NO

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES Cat? NO Background? NO

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES
Background? NO

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES Background? NO

Problem: Need to apply CNN to huge number of locations, scales, and aspect ratios, very computationally expensive!

Region Proposals / Selective Search

- Find "blobby" image regions that are likely to contain objects
- Relatively fast to run; e.g. Selective Search gives 2000 region proposals in a few seconds on CPU

R-CNN

Fast R-CNN

Faster R-CNN:

Make CNN do proposals!
Insert Region Proposal Network (RPN) to predict proposals from features

Jointly train with 4 losses:

1. RPN classify object / not object
2. RPN regress box coordinates
3. Final classification score (object classes)
4. Final box coordinates

Mask R-CNN

Mask R-CNN: Very Good Results!

Detection without Proposals: YOLO / SSD

Go from input image to tensor of scores with one big convolutional network!

Object Detection: Impact of Deep Learning

Other Problems

- Fine-grained recognition (e.g., dog/bird species)
- Instance segmentation
- Face detection and recognition
- Motion estimation
- Feature detection and description
- Depth estimation
- Novel view synthesis
- ...and many others

