CSCI 497P/597P: Computer Vision

Convolutional Neural Networks and some of the practicalities that make them work

Readings

with a great deal more detail...

 <u>http://cs231n.github.io/convolutional-</u> <u>networks/</u>

Announcements

- P2 grades out
- P3 grading underway
- Midterm grades also still in process

Demo

- A hand-rolled linear classifier in pytorch.
- Takeaways:

- compute loss = my_loss_fn(X, y, W, ...)

+ W.grad now contains the gradient!

Regularization – Linear Classifiers

(purons,

E.g. Suppose that we found a W such that L = 0. Is this W unique?

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0! Which do we prefer – W, or 2W?

Regularization: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization: Prefer Simpler Models

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

Data loss: Model predictions should match training data

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

...

Regularization: Prevent the model from doing *too* well on training data

Simple examples
L2 regularization:
$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$
Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

Neural Networks

Neural Network

Linear // classifiers /

This image is CC0 1.0 public domain

Neural Networks

Neural Network

Linear classifiers

> This image is CC0 1.0 public domain 0 60000

Neural Networks

Neural Network

This image is CC0 1.0 public domain

Convolutional Neural Networks

Neural Network

Convolutions

This image is CC0 1.0 public domain O Carana

Convolutional Layers

- Feature maps ("hidden layers", "activations", etc.) are no longer column vectors but 3D blobs:
 - Input # 256x256x3
 - Conv2d(in: 3, out:10) # 255x255x10
 - Conv2d(in: 10, out:20) # 255x255x20

CNNs before they were cool: LeNet-5 [LeCun et al., 1998]

• Today's architectures still look a lot like this!

The CNN that made them cool: AlexNet [Krizhevsky et al. 2012]

The CNN that made them cool: AlexNet [Krizhevsky et al. 2012]

The CNN that made them cool: AlexNet [Krizhevsky et al. 2012]

- What changed?
 - Bigger training data: ImageNet has 14 million images and 20,000 categories.
 - (performance numbers are on a 1000-category subset)
 - <u>GPU</u> implementation of ConvNets
 - Train bigger, deeper networks for longer than before
 - ReLU
 - Not new in AlexNet, but a necessary design choice to avoid vanishing gradients in deep network
- Hence "deep learning":

- a rebranding of formerly unfashionable neural networks

The filters:

Layer 1

Some image patches that have high activations on those filters:

Visualizations from

The filters, "deconvolved" back into pixel space (see the paper):

Some image patches that have high activations on those filters:

The filters, "deconvolved" back into pixel space (see the paper):

Some image patches that have high activations on those filters:

(2D visualization using t-SNE)

[Donahue, "DeCAF: DeCAF: A Deep Convolutional ...", arXiv 2013]

How do you get this to work?

- Basic version:
 - Download the 1281167 images in ImageNet
 - Feed an image into network, compute gradient of loss wrt parameters, update parameters.
 - Repeat a few times (1.5 billion should do it)

How do you get this to work? Mini-batch SGD

Loop:

- 1. Sample a batch of data
- 2. Forward prop it through the graph (network), get loss
- 3. **Backprop** to calculate the gradients
- 4. Update the parameters using the gradient

Batched Training

- Stochastic gradient descent, technically:
 - Sample a single random datapoint
 - Compute the loss
 - Update the parameters
- What people actually mean when they say SGD: Minibatch Gradient Descent
 - Shuffle your dataset
 - Iterate over batches of (batch_size) images:
 - Feed the whole batch through the network
 - Compute loss and update parameters
- What size batches?
 - Whatever your GPU can push through the model at once. 16, 32, 64, 256, ...

There's a bit more to it.

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Dropout
 - Weight initialization and batch normalization

Networks learn better on zerocentered data.

Consider what happens when the input to a neuron is always positive...

What can we say about the gradients on **w**? Always all positive or all negative :((this is also why you want zero-mean data!)

Preprocessing

Step 1: Preprocess the data

(Assume X [NxD] is data matrix, each example in a row)

In practice: Average all images in the dataset and subtract that from each input.

Dividing by stdev isn't usually done.

Data Augmentation

- When >1 million training images is not enough:
 - Randomly Flip, Scale, Crop, Rotate, Perturb brightness and color
 - Example:

```
import torchvision.transforms as tvt
transforms = tvt.Compose([
    tvt.Resize((224,224)),
    tvt.ColorJitter(hue=.05, saturation=.05),
    tvt.RandomHorizontalFlip(),
    tvt.RandomRotation(20, resample=PIL.Image.BILINEAR)
])
```
Data Augmentation

There's a bit more to it.

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Dropout
 - Weight initialization and batch normalization

Mini-batch SGD

Loop:

- 1. Sample a batch of data
- 2. **Forward** prop it through the graph (network), get loss
- 3. Backprop to calculate the gradients
- 4. Update the parameters using the gradient

Updating Parameters

```
# Vanilla update
x += - learning rate * dx
```

```
# Momentum update
v = mu * v - learning_rate * dx # integrate velocity
x += v # integrate position
```

Momentum combines the gradient update with a direction based on the average of recent update direction.

Update on v is usually something like: v = (1 - b) v + b * dx

Updating Parameters

Update on v is usually something like: v = (1 - b) v + b * dx

There's a bit more to it.

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Dropout

Learning Rate Decay (Annealing)

• Reduce learning rate as training continues.

- Exponential decay
- 1/t decay

Training CNNs

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Ensembling
 - Dropout

- Q: what happens when W=constant init is used?

- First idea: Small random numbers

(gaussian with zero mean and 1e-2 standard deviation)

W = 0.01* np.random.randn(D,H)

- First idea: **Small random numbers** (gaussian with zero mean and 1e-2 standard deviation)

W = 0.01* np.random.randn(D,H)

Works ~okay for small networks, but problems with deeper networks.

Lets look at some activation statistics

E.g. 10-layer net with 500 neurons on each layer, using tanh non-linearities, and initializing as described in last slide.

```
# assume some unit gaussian 10-D input data
D = np.random.randn(1000, 500)
hidden_layer_sizes = [500]*10
nonlinearities = ['tanh']*len(hidden_layer_sizes)
```

```
# look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean(H) for i,H in Hs.iteritems()]
layer_stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems():
    print 'hidden layer %d had mean %f and std %f' % (i+1, layer_means[i], layer_stds[i])
```

```
# plot the means and standard deviations
plt.figure()
plt.subplot(121)
plt.plot(Hs.keys(), layer_means, 'ob-')
plt.title('layer mean')
plt.subplot(122)
plt.plot(Hs.keys(), layer_stds, 'or-')
plt.title('layer std')
```

```
# plot the raw distributions
plt.figure()
for i,H in Hs.iteritems():
    plt.subplot(1,len(Hs),i+1)
    plt.hist(H.ravel(), 30, range=(-1,1))
```

input layer had mean 0.000927 and std 0.998388 hidden layer 1 had mean -0.000117 and std 0.213081 hidden layer 2 had mean -0.000001 and std 0.047551 hidden layer 3 had mean -0.000002 and std 0.010630 hidden layer 4 had mean 0.000001 and std 0.0002378 hidden layer 5 had mean 0.0000002 and std 0.000532 hidden layer 6 had mean 0.000000 and std 0.000119 hidden layer 7 had mean 0.000000 and std 0.000026 hidden layer 8 had mean -0.000000 and std 0.000006 hidden layer 9 had mean 0.000000 and std 0.000006 hidden layer 10 had mean -0.000000 and std 0.000001

input layer had mean 0.000927 and std 0.998388 hidden layer 1 had mean -0.000117 and std 0.213081 hidden layer 2 had mean -0.000001 and std 0.047551 hidden layer 3 had mean -0.000002 and std 0.010630 hidden layer 4 had mean 0.000002 and std 0.0002378 hidden layer 5 had mean 0.000002 and std 0.000532 hidden layer 6 had mean -0.000000 and std 0.000119 hidden layer 7 had mean 0.000000 and std 0.000026 hidden layer 8 had mean -0.000000 and std 0.000006 hidden layer 9 had mean 0.000000 and std 0.000000 hidden layer 10 had mean -0.000000 and std 0.000000

Activations become zero!

What do the gradients look like?

W = np.random.randn(fan_in, fan_out) / np.sqrt(2/fan_in)

input layer had mean 0.000501 and std 0.999444 hidden layer 1 had mean 0.562488 and std 0.825232 hidden layer 2 had mean 0.553614 and std 0.827835 hidden layer 3 had mean 0.545867 and std 0.827835 hidden layer 4 had mean 0.565396 and std 0.826902 hidden layer 5 had mean 0.547678 and std 0.834092 hidden layer 6 had mean 0.587103 and std 0.860035 hidden layer 7 had mean 0.596867 and std 0.870610 hidden layer 8 had mean 0.623214 and std 0.889348 hidden layer 10 had mean 0.557531 and std 0.844523

- # fan_in = numel(input)
- # fan_out = numel(output)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

. . .

"you want zero-mean unit-variance activations? just make them so."

consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

this is a vanilla differentiable function...

"you want zero-mean unit-variance activations? just make them so."

D

1. compute the empirical mean and variance independently for each dimension.

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

Problem: do we necessarily want a zeromean unit-variance input?

[loffe and Szegedy, 2015]

Normalize:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

And then allow the network to squash the range if it wants to:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

Details in the batchorm paper: https://arxiv.org/pdf/1502.03167.pdf

Note, the network can learn: $\gamma^{(k)} = \sqrt{\text{Var}[x^{(k)}]}$ $\beta^{(k)} = \text{E}[x^{(k)}]$ to recover the identity mapping.

- At test time, the answer shouldn't depend on the batch:
 - Instead, use a global average (computed during training) of activation means and variances

BatchNorm2d

CLASS torch.nn.BatchNorm2d(*num_features*, *eps=1e-05*, *momentum=0.1*, *affine=True*, *track_running_stats=True*)

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

[SOURCE]

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

TL;DR: Using batch normalization speeds up training and makes it less sensitive to weight initialization.

Training CNNs

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Ensembling
 - Dropout

Model Ensembles

- 1. Train multiple independent models
- 2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Why would this work?

- Using different random initializations results in training arriving at different local minima.
- Remarkable (empirical) fact: performance of each one is similar!

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016 Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017 Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016 Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017 Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Cyclic learning rate schedules can make this work even better!

Training CNNs

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Ensembling
 - Dropout

Regularization: Recall

- Penalizes large weights to prevent the model from fitting training data *too* closely (overfitting)
 Helps network generalize to unseen data
- L2 regularization forces parameters to be used "equally"
 - parameters with similar magnitudes will have a lower regularization cost than mostly zero with a few huge values.
- Another way to force the network to use all its parameters equally: randomly drop parameters each training iteration!

Another way to force the network to use all its parameters equally: **randomly drop parameters** each training iteration!

Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

Regularization: Dropout

p = 0.5 # probability of keeping a unit active. higher = less dropout

```
def train_step(X):
    """ X contains the data """
```

forward pass for example 3-layer neural network
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = np.random.rand(*H1.shape)

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

Example forward pass with a 3-layer network using dropout

Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation; Prevents co-adaptation of features

Regularization: Dropout

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large **ensemble** of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks! Only ~ 10^{82} atoms in the universe...

Dropout: Test time

def predict(X):

ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always => We must scale the activations so that for each neuron: <u>output at test time</u> = <u>expected output at training time</u>

More common: "Inverted dropout"

p = 0.5 # probability of keeping a unit active. higher = less dropout

Training CNNs

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Ensembling
 - Dropout

Next Up: CNN Architecture Tour

- What happened since AlexNet?
- There's a general theme:

