CSCI 497P/597P: Computer Vision

Convolutional Neural Networks and some of the practicalities that make them work
Readings

with a great deal more detail...

• http://cs231n.github.io/convolutional-networks/
Announcements

- P2 grades out
- P3 grading underway
- Midterm grades also still in process
Demo

• A hand-rolled linear classifier in pytorch.

• Takeaways:
 – compute loss = my_loss_fn(X, y, W, ...)
 – call backward()
 – W.grad now contains the gradient!
Regularization – Linear Classifiers

E.g. Suppose that we found a W such that $L = 0$. Is this W unique?
Regularization

E.g. Suppose that we found a W such that $L = 0$. Is this W unique?

No! $2W$ is also has $L = 0$!
Which do we prefer – W, or $2W$?
Regularization: Prefer Simpler Models
Regularization: Prefer Simpler Models
Regularization: Prefer Simpler Models

Regularization pushes against fitting the data too well so we don’t fit noise in the data
A more interesting example of non-uniqueness...
Regularization

\[L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) \]

Data loss: Model predictions should match training data
Regularization

\[L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W) \]

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data
Regularization

\[L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W) \]

- **Data loss**: Model predictions should match training data
- **Regularization**: Prevent the model from doing too well on training data

\[\lambda \text{ = regularization strength (hyperparameter)} \]

Simple examples
- **L2 regularization**: \[R(W) = \sum_k \sum_l W_{k,l}^2 \]
- **L1 regularization**: \[R(W) = \sum_k \sum_l |W_{k,l}| \]
- **Elastic net (L1 + L2)**: \[R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}| \]
Neural Networks

Linear classifiers

Neural Network
Neural Networks

Neural Network

Linear classifiers

Nonlinearities!
Neural Networks

Matrix multiplications

Nonlinearities!
Convolutional Neural Networks

Neural Network

Convolutions

Nonlinearities!
Convolutional Layers

• Feature maps (“hidden layers”, “activations”, etc.) are no longer column vectors but 3D blobs:
 – Input # 256x256x3
 – Conv2d(in: 3, out:10) # 255x255x10
 – Conv2d(in: 10, out:20) # 255x255x20
 – ...

[Diagram of convolutional layers]
Convolution as a general layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
CNNs before they were cool: LeNet-5 [LeCun et al., 1998]

• Today’s architectures still look a lot like this!
The CNN that made them cool: AlexNet

[Krizhevsky et al. 2012]
The CNN that made them cool: AlexNet [Krizhevsky et al. 2012]

• What happened?
The CNN that made them cool: AlexNet [Krizhevsky et al. 2012]

• What changed?
 – Bigger training data: ImageNet has 14 million images and 20,000 categories.
 • (performance numbers are on a 1000-category subset)
 – GPU implementation of ConvNets
 • Train bigger, deeper networks for longer than before
 – ReLU
 • Not new in AlexNet, but a necessary design choice to avoid vanishing gradients in deep network

• Hence “deep learning”:
 – a rebranding of formerly unfashionable neural networks
What do all these feature maps mean?

The filters:

Some image patches that have high activations on those filters:

Visualizations from
[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]
What do all these feature maps mean?

The filters, “deconvolved” back into pixel space (see the paper):

Some image patches that have high activations on those filters:

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]
What do all these feature maps mean?

The filters, “deconvolved” back into pixel space (see the paper):

Some image patches that have high activations on those filters:

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]
What do all these feature maps *mean*?

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]
What do all these feature maps mean?

M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014
Another View: Visualizing AlexNet in 2D with t-SNE

Linear Classifier

(c) DeCAF\textsubscript{1}

(d) DeCAF\textsubscript{6}

How do you get this to work?

• Basic version:
 – Download the 1281167 images in ImageNet
 – Feed an image into network, compute gradient of loss wrt parameters, update parameters.
 – Repeat a few times (1.5 billion should do it)
How do you get this to work?

Mini-batch SGD

Loop:
1. **Sample** a batch of data
2. **Forward** prop it through the graph (network), get loss
3. **Backprop** to calculate the gradients
4. **Update** the parameters using the gradient
Batched Training

• Stochastic gradient descent, technically:
 – Sample a single random datapoint
 – Compute the loss
 – Update the parameters
• What people actually mean when they say SGD: Minibatch Gradient Descent
 – Shuffle your dataset
 – Iterate over batches of (batch_size) images:
 • Feed the whole batch through the network
 • Compute loss and update parameters
• What size batches?
 – Whatever your GPU can push through the model at once. 16, 32, 64, 256, ...
There’s a bit more to it.

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Dropout
 – Weight initialization and batch normalization
Networks learn better on zero-centered data.

Consider what happens when the input to a neuron is always positive...

\[f \left(\sum_i w_i x_i + b \right) \]

What can we say about the gradients on \(w \)?
Always all positive or all negative :((this is also why you want zero-mean data!)
Preprocessing

Step 1: Preprocess the data

(Assume X [NxD] is data matrix, each example in a row)

In practice: Average all images in the dataset and subtract that from each input. Dividing by stdev isn’t usually done.
Data Augmentation

• When >1 million training images is not enough:
 – Randomly Flip, Scale, Crop, Rotate, Perturb brightness and color
 – Example:

```python
import torchvision.transforms as tvt
transforms = tvt.Compose([
    tvt.Resize((224,224)),
    tvt.ColorJitter(hue=.05, saturation=.05),
    tvt.RandomHorizontalFlip(),
    tvt.RandomRotation(20, resample=PIL.Image.BILINEAR)
])
```
Data Augmentation
There’s a bit more to it.

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Dropout
 – Weight initialization and batch normalization
Mini-batch SGD

Loop:
1. **Sample** a batch of data
2. **Forward** prop it through the graph (network), get loss
3. **Backprop** to calculate the gradients
4. **Update** the parameters using the gradient
Momentum combines the gradient update with a direction based on the average of recent update direction.

Update on v is usually something like:

$$ v = (1 - b) v + b \times dx $$
Momentum combines the gradient update with a direction based on the average of recent updates.

Update on v is usually something like:

$$v = (1 - b) v + b * dx$$
There’s a bit more to it.

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Dropout
Learning Rate Decay (Annealing)

- Reduce learning rate as training continues.
 - Step decay:
 - Exponential decay
 - $1/t$ decay
Training CNNs

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Weight initialization and batch normalization
 – Ensembling
 – Dropout
Weight Initialization

- Q: what happens when W=constant init is used?
Weight Initialization

- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[W = 0.01 \times \text{np.random.randn}(D,H) \]
Weight Initialization

- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[W = 0.01 \times \text{np.random.randn}(D,H) \]

Works ~okay for small networks, but problems with deeper networks.
Let's look at some activation statistics.

E.g. 10-layer net with 500 neurons on each layer, using tanh non-linearities, and initializing as described in last slide.
input layer had mean 0.000927 and std 0.998388
hidden layer 1 had mean -0.000117 and std 0.213081
hidden layer 2 had mean -0.000001 and std 0.047551
hidden layer 3 had mean -0.000002 and std 0.010630
hidden layer 4 had mean 0.000001 and std 0.002378
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -0.000000 and std 0.000119
hidden layer 7 had mean 0.000000 and std 0.000026
hidden layer 8 had mean -0.000000 and std 0.000006
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std 0.000000
Activations become zero!

What do the gradients look like?
Weight Initialization

\[W = \frac{\text{np.random.randn(fan_in, fan_out)}}{\sqrt{2/\text{fan_in}}} \]

fan_in = numel(input)
fan_out = numel(output)
Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

...
Batch Normalization

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

this is a vanilla differentiable function...
Batch Normalization

“you want zero-mean unit-variance activations? just make them so.”

1. compute the empirical mean and variance independently for each dimension.

2. Normalize

\[\hat{x}(k) = \frac{x(k) - E[x(k)]}{\sqrt{\text{Var}[x(k)]}} \]
Batch Normalization

Problem: do we necessarily want a zero-mean unit-variance input?

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

\[
\hat{x}(k) = \frac{x(k) - E[x(k)]}{\sqrt{\text{Var}[x(k)]}}
\]
Batch Normalization

Normalize:

\[\hat{x}(k) = \frac{x(k) - E[x(k)]}{\sqrt{\text{Var}[x(k)]}} \]

And then allow the network to squash the range if it wants to:

\[y(k) = \gamma(k) \hat{x}(k) + \beta(k) \]

Note, the network can learn:

\[\gamma(k) = \sqrt{\text{Var}[x(k)]} \]
\[\beta(k) = E[x(k)] \]

to recover the identity mapping.

- At test time, the answer shouldn’t depend on the batch:
 - Instead, use a global average (computed during training) of activation means and variances
Batch Normalization

BatchNorm2d

CLASS torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

\[
y = \frac{x - E[x]}{\sqrt{Var[x] + \epsilon}} \ast \gamma + \beta
\]

TL;DR: Using batch normalization speeds up training and makes it less sensitive to weight initialization.
Training CNNs

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Ensembling
 - Dropout
Model Ensembles

1. Train multiple independent models
2. At test time average their results
 (Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Why would this work?
• Using different random initializations results in training arriving at different local minima.
• Remarkable (empirical) fact: performance of each one is similar!
Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yikuan Li and Geoff Pleiss, 2017. Reproduced with permission.
Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Cyclic learning rate schedules can make this work even better!
Training CNNs

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Weight initialization and batch normalization
 – Ensembling
 – Dropout
Regularization: Recall

• Penalizes large weights to prevent the model from fitting training data too closely (overfitting)
 – Helps network generalize to unseen data
• L2 regularization forces parameters to be used “equally”
 – parameters with similar magnitudes will have a lower regularization cost than mostly zero with a few huge values.
• Another way to force the network to use all its parameters equally: randomly drop parameters each training iteration!
Another way to force the network to use all its parameters equally: randomly drop parameters each training iteration!

Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al., "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014
Regularization: Dropout

```python
def train_step(X):
    """ X contains the data """

    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np.random.rand(*H1.shape) < p  # first dropout mask
    H1 *= U1  # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = np.random.rand(*H2.shape) < p  # second dropout mask
    H2 *= U2  # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout
Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

- has an ear
- has a tail
- is furry
- has claws
- mischievous look

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large *ensemble* of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks!
Only $\sim 10^{82}$ atoms in the universe...
Dropout: Test time

```python
def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time = expected output at training time
"Vanilla Dropout: Not recommended implementation (see notes below)"

\[p = 0.5 \] # probability of keeping a unit active. higher = less dropout

```python
def train_step(X):
    
    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np.random.rand(*H1.shape) < p # first dropout mask
    H1 *= U1 # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = np.random.rand(*H2.shape) < p # second dropout mask
    H2 *= U2 # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)

def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

Dropout Summary

- **Drop in forward pass**
- **Scale at test time**
More common: “Inverted dropout”

```python
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
    H1 *= U1 # drop!

    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
    H2 *= U2 # drop!

    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)

def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    out = np.dot(W3, H2) + b3
```

test time is unchanged!
Training CNNs

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Weight initialization and batch normalization
 – Ensembling
 – Dropout
Next Up: CNN Architecture Tour

• What happened since AlexNet?
• There’s a general theme:

WE NEED TO GO DEEPER