CSCI 497P/597P: Computer Vision

Neural networks
Convolutional Neural Networks
Readings

with a great deal more detail...

Announcements

• P4 out tonight. You will:
 – Modify a trained 1000-class classifier to turn it into a 2-class “dog vs food” classifier.
 – Misuse backprobackpropagation to:
 • see which input pixels are most influential in classifying it
 • trick the classifier into predicting the wrong class
 • synthesize images that maximize a chosen class score
Announcements

• P4 out tonight. You will:
 – **Modify a trained 1000-class classifier to turn it into a 2-class “dog vs food” classifier.**
 – **Misuse backpropagation to:**
 • see which input pixels are most influential in classifying it
 • trick the classifier into predicting the wrong class
 • synthesize images that maximize a chosen class score
Announcements

– Misuse backpropagation to:
 • see which input pixels are most influential (saliency)
 • trick the classifier into predicting the wrong class
 • synthesize images that maximize a chosen class score
Announcements

– Misuse backpropagation to:
 • see which input pixels are most influential in classifying it
 • trick the classifier into predicting the wrong class
 • synthesize images that maximize a chosen class score
Announcements

– Misuse backpropagation to:
 • see which input pixels are most influential in classifying it
 • trick the classifier into predicting the wrong class
 • synthesize images that maximize a chosen class score
Goals

• Understand why we need activation functions.
• Understand the motivation and behavior of convolutional layers in neural networks.
• Understand the degrees of freedom available in setting up a convolution layer:
 – Output channels, kernel size, padding, stride
• Know the meaning of the various basic layers involved in standard CNN architectures
 – Conv, ReLU, Pool, Fully Connected
Neural Networks

Linear classifiers

Neural Network
Neural networks: without the brain stuff

(Before) Linear score function:

\[f = Wx \]

(Now) 2-layer Neural Network or 3-layer Neural Network

\[f = W_2 \max(0, W_1 x) \]
\[f = W_3 \max(0, W_2 \max(0, W_1 x)) \]
Activation Functions

\[f(x, W) = Wx \]
Activation Functions

\[f(x, W) = W x \]

A linear classifier can only do so well...
Activation Functions

\[f(x, W) = Wx \]

\[f(x, W_1, W_2) = W_1(W_2x) \]

Let’s try stacking two linear classifiers together.
Activation Functions

\[f(x, W) = Wx \]

\[f(x, W_1, W_2) = W_1(W_2x) \]

Uh oh – linear functions compose to linear functions.
Activation Functions

\[f(x, W) = Wx \]
\[f(x, W_1, W_2) = W_1(W_2x) \]

\[W \leftarrow W_1 W_2 \]
\[f(x, W) = Wx \]

Uh oh – linear functions compose to linear functions.
Activation Functions

\[f(x, W_1, W_2, W_3) = W_3 \max(0, W_2 \max(0, W_1 x)) \]

Nonlinearities prevent the composed linear functions from collapsing into a single one. This amounts to a piecewise linear classifier.
Neural Networks

Neural Network

Linear classifiers

Nonlinearities!
Neural Networks: Nonlinear Classifiers built from Linear Classifiers

Figure: Fei-Fei Li, Justin Johnson, & Serena Yeung
Activation Functions

Sigmoid

\[\sigma(x) = \frac{1}{1+e^{-x}} \]

tanh

\[\tanh(x) \]

ReLU

\[\max(0, x) \]

Leaky ReLU

\[\max(0.1x, x) \]

Maxout

\[\max(w_1^T x + b_1, w_2^T x + b_2) \]

ELU

\[\begin{cases}
 x & x \geq 0 \\
 \alpha(e^x - 1) & x < 0
\end{cases} \]

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
Gradient Descent in Neural Networks

- Before: take gradients of $L(X, Y, W, b)$.
- Now: take gradients of $L(X, Y, W_1, W_2, \ldots)$

\[
L(X, Y, W, b) = xe(L_{X,Y})
\]

\[
\frac{dL}{dw}
\]
Backpropagation in Pytorch

- Your deep learning framework knows how to differentiate anything you might want to do.
- Example, in pytorch:
 - Your classifier inherits from `torch.nn.Module`
 - You implement its `forward()` method
 - Torch generates a `backward()` method for you!
 - Training looks like this (pseudocode)
    ```python
    output = classifier(data)  # uses W, b
    loss = loss_function(output, true_labels)
    loss.backward()  # (backprop magic here!)
    dW = w.grad
    db = b.grad
    W -= step_size * dW
    b -= step_size * db
    ```
Backpropagation in Pytorch

• Example, in pytorch (pseudocode):

```python
output = classifier(data, W, b)  # uses W, b
loss = loss_function(output, true_labels)
loss.backward()  # (backprop magic here!)
```

```python
dW = w.grad
db = b.grad
W -= step_size * dW
b -= step_size * db
```

• In practice, an Optimizer performs the updates instead:

```python
optimizer = torch.optim.SGD(net.parameters(),
                           lr=0.0001)
output = classifier(data)
loss = loss_function(output, true_labels)
loss.backward()
optimizer.step()
```
Two important pieces

• The feature extractor (ϕ)

$$
\phi = \text{unroll} \left(\text{rgb2gray}(\text{img}) \right)
$$

• The classifier (h)

$$
\text{score} = h_2 \left(\max(0, h_1 x + b_1) \right) + b_2
$$
The last layer of (most) neural networks are linear classifiers.

This piece is just a linear classifier

Key: perform enough processing so that by the time you get to the end of the network, the classes are linearly separable.
The last layer of (most) neural networks are linear classifiers.

This piece is just a linear classifier

The network is the feature extractor and the classifier.

h swallowed ϕ!
A Linear Classifier

- \(y = Wx + b \)
- Every row of \(y \) corresponds to a hyperplane in \(x \) space

The case when \(d_{in} = 2 \). A single row in \(y \) plotted for every possible value of \(x \).

\(d_{out} \) = \#classes

\(d_{in} \)
Linear Classifier: Parameter Count

• How many parameters does a linear function have? Suppose:
 - # pixels = \(256 \times 256 = 65536\)
 - # classes = 1024

The case when \(d_{in} = 2\). A single row in \(y\) plotted for every possible value of \(x\)
The linear function for images

(not to scale!)
Linear Classifier: Parameter Count

• How many parameters does a linear function have? Suppose:
 – # pixels = 256*256 = 65536 = 2^{16}
 – # classes = 1024 = 2^{10}

• 2^{26} parameters for a one-layer network on a tiny image.

• More layers means more parameters:
 – more computation
 – difficult to train

• Can we make better use of parameters?
Idea 1: local connectivity

- Pixels only related to nearby pixels
Idea 2: Translation invariance

- Pixels only related to nearby pixels
- Weights should not depend on the location of the neighborhood
Linear function + translation invariance = convolution

- Local connectivity determines kernel size

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Convolution Layer

32x32x3 image -> preserve spatial structure
Convolution Layer

32x32x3 image

75 params

5x5x3 filter

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
Convolution Layer

32x32x3 image

5x5x3 filter

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
Convolution Layer

32x32x3 image
5x5x3 filter w

1 number:
the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. $5 \times 5 \times 3 = 75$-dimensional dot product + bias)

$$w^T x + b$$
Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map
Convolution Layer

consider a second, green filter

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation maps

3
32
32
28
28
Convolution as a general layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
Convolutional Neural Networks

- Convolution layers interspersed with activation functions.
Convolution as a primitive
Convolution as a feature detector

- score at \((x,y)\) = dot product (filter, image patch at \((x,y)\))
- Response represents similarity between filter and image patch
Kernel sizes and padding
Kernel sizes and padding

- Valid convolution decreases size by \((k-1)/2\) on each side
 - Pad by \((k-1)/2\), or
 - Allow spatial dimensions to shrink.
torch.nn.Conv2d

- `torch.nn.Conv2d(`
 - `in_channels`, # channels in input feature map
 - `out_channels`, # filters to learn (== channels in the output)
 - `kernel_size`, # size of each filter kernel
 - `stride=1`, # move this many pixels when sliding filter
 - `padding=0`, # pad the input by this much (can be tuple)
 - `dilation=1`,
 - `groups=1`,
 - `bias=True` # add a bias after convolution?
)

\[Wx + b \quad W \ast x + b \]
Convolutional Layers

- Feature maps ("hidden layers", "activations", etc.) are no longer column vectors but 3D blobs:
 - Input # 256x256x3
 - Conv2d(in: 3, out:10) # 255x255x10
 - Conv2d(in: 10, out:20) # 255x255x20
 - ...

Convolutional Layers

• Feature maps (“hidden layers”, “activations”, etc.) are no longer column vectors but 3D blobs:
 – Input # 256x256x3
 – Conv2d(in: 3, out:10) # 255x255x10
 – Conv2d(in: 10, out:20) # 254x254x20
 – … this could get large quickly, and we ultimately need a vector that we can apply a linear classifier to.
Downsampling, Subsampling, Pooling

- Reducing spatial dimensions:
 - Subsample (e.g. throw away every other pixel)
 - Average pooling
 - Max pooling (most commonly used)
Convolutional Networks

• Feature maps ("hidden layers", "activations", etc.) are no longer column vectors but 3D blobs:
 – Input # 256x256x3
 – Conv2d(in: 3, out:10) # 255x255x10
 – Subsample (2x2)
 – Conv2d(in: 10, out:20) # 127x127x20
 – ...
 – Conv/subsample until 1x1xC
 – Or at some point, just unravel HxWxC into HWCx1 vector.
 – Then apply a linear classifier!
CNNs before they were cool: LeNet-5 [LeCun et al., 1998]

- Today’s architectures still look a lot like this!
The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]
The CNN that made them cool: AlexNet [Krizhevsky et al. 2012]

- What happened?
The CNN that made them cool: AlexNet [Krizhevsky et al. 2012]

• What changed?
 – Bigger training data: ImageNet has 14 million images and 20,000 categories.
 • (performance numbers are on a 1000-category subset)
 – GPU implementation of ConvNets
 • Train bigger, deeper networks for longer than before
 – ReLU
 • Not new in AlexNet, but a necessary design choice to avoid vanishing gradients in deep network

• Hence “deep learning”:
 – a rebranding of formerly unfashionable neural networks
TODO

• Friday
 – Regularization
 – Torch linear classifier demo?
 – CNN training

• Monday
 – Architecture tour
 – CNNs for other problems