CSCI 497P/597P: Computer Vision

(Stochastic) Gradient Descent
Neural networks
Readings

with a great deal more detail...

• http://cs231n.github.io/optimization-1/
• http://cs231n.github.io/optimization-2/
• http://cs231n.github.io/neural-networks-1/
• http://cs231n.github.io/neural-networks-2/
Announcements

• Last project - P4 (AlexNet)
 – Out tomorrow 5/27
 – Due a week from tomorrow 6/3

• HW3 out, due Monday
 – your lowest homework score is dropped
Goals

• Understand how to train a classifier by minimizing a loss function using gradient descent.
• Understand the intuition behind using Stochastic (Minibatch) Gradient Descent.
• Understand neural networks as a stack of linear classifiers with nonlinearities (activation functions) in between.
 – Understand why we need activation functions.
 – Understand the vanishing gradients problem.
Linear classifiers

- Equation: $w^T x + b = 0$
- Points on the same side are the same class
Multiclass Linear Classifiers:
Stack multiple w^T into a matrix.
Multiclass Linear Classifiers:
Stack multiple w^\top into a matrix.

\[
\begin{align*}
W &= \begin{bmatrix}
0.2 & -0.5 & 0.1 & 2.0 \\
1.5 & 1.3 & 2.1 & 0.0 \\
0 & 0.25 & 0.2 & -0.3 \\
\end{bmatrix} \\
\begin{bmatrix}
56 \\
231 \\
24 \\
2 \\
\end{bmatrix} + \\
\begin{bmatrix}
1.1 \\
3.2 \\
-1.2 \\
\end{bmatrix} \\
= \begin{bmatrix}
-96.8 \\
437.9 \\
61.95 \\
\end{bmatrix} \\
\end{align*}
\]

\[
f(x_i; W, b) = \frac{e^{f_k}}{\sum_j e^{f_j}}
\]

P(cat) = 0.0
P(dog) = 1.0
P(ship) = 0.0
Multiclass Linear Classifier: Geometric Interpretation
Taking stock

• We have:
 - $\phi = \text{unravel}(\text{rgb2gray}(\text{img}))$, a feature extractor
 - $h(x) = W^T x$, a multiclass linear classifier
 - $L = \sum_{i=0}^{N} L_i$, a loss function

• We don’t have:
 - a way to find a W that results in a small L.

$L_i = -\log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}} \right)$
Minimizing the Loss

• Use **optimization** to find the W that *minimizes* the loss function.
 – Linear regression: solvable in closed form
 – Most of the time: no closed form.
Optimization
Finding a W that minimizes L

- Simple idea: walk downhill.
Gradient Descent: Generally

• Gradient of the loss function with respect to the *weights* tells us how to change the weights to improve the loss.
Gradient Descent: Intuition

\[L(X, Y, w) \]

\[\frac{\partial L}{\partial w} = 0 \]

\[w \leftarrow w - \alpha \frac{\partial L}{\partial w} \]
The effect of Step Size

Too large: unstable

Too small: slow convergence
Reality isn’t quite so pretty

- Loss functions are rarely **convex**. Finding a **local minimum** is the best you can do.
Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += -step_size * weights_grad  # perform parameter update
```
Gradient Descent: Intuition

$L(x, y, \mathbf{w}, \mathbf{w}_2)$

$x = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$
Gradient Descent: Demo

 - select “Softmax” radio button at the bottom
Stochastic Gradient Descent

- \(L(X, Y; W) \) depends on
 - All data points \(x_1..x_n \)
 - Ground truth labels \(y_1..y_n \)
 - Weights \(W \)
- Very expensive to evaluate if you have a lot of data.

```python
# Vanilla Minibatch Gradient Descent

while True:
    data_batch = sample_training_data(data, 256)  # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad  # perform parameter update
```
Stochastic Gradient Descent

- Idea: consider only a few data points at a time.
- Loss is now computed using only a small batch (minibatch) of data points.
- Update weights the same way using the gradient of L wrt the weights.
Stochastic Gradient Descent: Intuition
Taking stock

• We have:
 – $\phi = \text{unravel}(\text{rgb2gray}(\text{img}))$, a feature extractor

 – $h(x) = W^T x$, a multiclass linear classifier

 – $L = -\log \left(\sum_j e^{f_j} \right)$, a loss function

 – A way too adjust W until we can’t make L any smaller.
So about that linearly separable assumption...

- Ideas:
 - $\phi = \text{unravel(rgb2gray(img))}$, a feature extractor
 - use a fancier ϕ?
 - Learn ϕ too.
Neural Networks

Linear classifiers

Neural Network
Neural networks: without the brain stuff

(Before) Linear score function: \(f = Wx \)
Neural networks: without the brain stuff

(Before) Linear score function: \(f = Wx \)

(Now) 2-layer Neural Network: \(f = W_2 \max(0, W_1x) \)

\[h_2 \in \begin{array}{c} W_2 \end{array} \leftarrow h \in \begin{array}{c} W \end{array} \leftarrow x \]
Neural networks: without the brain stuff

(Before) Linear score function: \(f = Wx \)

(Now) 2-layer Neural Network

\[f = W_2 \max(0, W_1 x) \]
Neural networks: without the brain stuff

(Before) Linear score function: \[f = WX \]

(Now) 2-layer Neural Network or 3-layer Neural Network

\[f = W_2 \max(0, W_1 x) \]

\[f = W_3 \max(0, W_2 \max(0, W_1 x)) \]
Training a 2 layer neural network in 20 lines of python

```python
import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
    h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()
    print(t, loss)

grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2
```

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
“Hidden Layers”

\[H = 4 \]

Input Layer:
- **W\(_1\)**, a 3x4 matrix converts input into hidden layer activations

Hidden Layer:
- **W\(_2\)**, a 4x2 matrix transforms hidden layer activations to output scores

Output Layer:
- \[h = W_2 W_1 x \]

Figures: Fei-Fei Li, Justin Johnson, & Serena Yeung
Neural Networks: Nonlinear Classifiers built from Linear Classifiers

Figures: Fei-Fei Li, Justin Johnson, & Serena Yeung
Neural networks: without the brain stuff

(Before) Linear score function: \(f = Wx \)

(Now) 2-layer Neural Network or 3-layer Neural Network
\[f = W_2 \max(0, W_1 x) \]
\[f = W_3 \max(0, W_2 \max(0, W_1 x)) \]

???
Activation Functions

\[f(x, W) = Wx \]
Activation Functions

\[f(x, W) = WX \]

A linear classifier can only do so well...
Activation Functions

\[f(x, W) = Wx \]
\[f(x, W_1, W_2) = W_1(W_2x) \]

Let’s try stacking two linear classifiers together
Activation Functions

\[f(x, W) = Wx \]

\[f(x, W_1, W_2) = W_1(W_2x) \]

\[W \leftarrow W_1W_2 \]

\[f(x, W) = Wx \]

Uh oh – linear functions compose to linear functions.
Activation Functions

\[f(x, W) = Wx \]
\[f(x, W_1, W_2) = W_1(W_2x) \]

Uh oh – linear functions compose to linear functions.
Activation Functions

\[f(x, W_1, W_2, W_3) = W_3 \max(0, W_2 \max(0, W_1 x)) \]

Nonlinearities prevent the composed linear functions from collapsing into a single one. This amounts to a piecewise linear classifier.
Neural Networks

Neural Network

Linear classifiers
Neural Networks

Nonlinearities!
Neural Networks: Nonlinear Classifiers built from Linear Classifiers

Figure: Fei-Fei Li, Justin Johnson, & Serena Yeung
Activation Functions

Sigmoid
\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]

tanh
\[\tanh(x)\]

ReLU
\[\max(0, x)\]

Leaky ReLU
\[\max(0.1x, x)\]

Maxout
\[\max(w_1^T x + b_1, w_2^T x + b_2)\]

ELU
\[
\begin{cases}
 x & x \geq 0 \\
 \alpha(e^x - 1) & x < 0
\end{cases}
\]