CSCI 497P/597P: Computer Vision

Scott Wehrwein

Linear Classifiers

PIPE 0.94

Reading

e http://cs231n.github.io/linear-classify/

Announcements

Last project - P4 (AlexNet)
— Out Wednesday 5/27
— Due Wednesday 6/3
Optional HW3
— mainly to help prepare you for the final
— out tonight, due by 6/1 if you want it graded
— no solution key will be released
— you may collaborate freely
Takehome final exam
— out 6/8 (Mon), due 6/11 (Thu)
597P — today is the last day to opt in for P/NP

Goals

Understand the benefits and limitations of linear
classifiers over KNN.

Understand the mathematical formulation of a binary
and multiclass linear classifier.

Know the definition and purpose of a loss function

Understand the intuition behind the softmax/cross-
entropy loss

Understand how to train a classifier by minimizing a
loss function using gradient descent.

Understand the intuition behind using Stochastic
(Minibatch) Gradient Descent.

Nearest Neighbor Classifier

Image classification - Multiclass
classification

Which of these is it:
dog, cat or zebra?
Dog

Simple Image Classification with KNN

. ¢) Convert to grayscale and unravel into a
vector.

\

Q

@Classify using majority label of the k nearest
neighbors according to a distance metric d.

/

k-Nearest Neighbor on images never used.

- Very slow at test time

- Distance metrics on pixels are not informative

Original

//\ (all 3 images have same L2 distance to the one on the left)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

KNN: Bottom Line

* Fast to train but slow to predict

* Distance metrics don’t behave well for high-
dimensional image vectors

Classifying Images: Let’s simplify

* Nearest Neighbor Classifier
the data NN classifier f

Linear classifiers

* Finding nearest neighbor is slow.

* Basicidea:
— Training time: find a line that separates the data

—

-Restri

¢

Linear classifiers

e Alinear classifier
corresponds to a

hyperplane |
— Equivalent of a line in ,sf
high-dimensional space ek
— Equation@ 3’;"*’“
* Points on the same
side are the same class Wj

Does this ever work?

* |t’s easier to be
linearly separable in
high-dimensional
space.

e But simple linear

classifiers still don’t
work on most

interesting data.

Some history from the
Antedeepluvian Era

 Example pipeline from days of yore:
— Detect corners and extract SIFT features
— Collect features into a “bag of features”

— (if you’re feeling fancy) maintain some spatial
information

— Somehow convert feature bag to fixed size
— Apply linear classifier \/

* Key idea@ designed by hand, while h is
learned fro™ data.

Some history of the
Antedeepluvian Era

e Key idea: ¢ Is designed by hand, while h is
learned from data.

* Nowadays: learn both from data - “end-to-
end”: image goes in, label comes out.
— Enabled only recently by bigger

* labeled datasets
e compute power (GPUs)

Linear classifiers
I T g—
* Equation: WTXV-I- b=0 A X b >0

 Points on the same side
are the same class

We have a classifier

h(x) =w' x + b gives a
score

Score negative: red
Score positive: blue

Does it solve the ok
runtime issues of KNN?

jes!

Multiclass Linear Classifiers:
Stack multiple w' into a matrix.

stretch pixels into single column

l\v\L

5

g%?;

input image Uj

3.2

N\
05| 01 | 20 56\
/
13021 om D231
/-/ <
025| 0.2 | -0.3 24
%% A‘< 2
AN

-1.2

-96.8

437.9

61.95

f(zi; W, b)

cat score

dog score

ship score

Multiclass Linear Classifier:
Geometricinterpretation <3

deer classifier

The Bias Trick

HTX Tb

The Bias Trick

 Fold b into an additional dimension of w
 Add a fixed 1 to all feature vectors.

* Now, h(x) = w'x

We have a classifier

* h(x) =w' x gives a score

* Score negative: red
* Score positive: blue

Where does w come
from? 7\

How do we find a good W?

 Step 1: Fora iver@

decide on

unction:9 measure of

how much we dislike
the line.

* Step 2: use optimization
to find th hat

Cminimizes Yhe loss

function.

Loss Functions

e Step 1: For a given W, decide on a
Loss Function: a measure of how much we
dislike this classifier.

e Step 2: use optimization to find the W that
minimizes the loss function. n
MmﬂAX 'L”

— Linear regression: solvable in closed form MW

¥\
— Useful loss functions in vision: no closed form.

Loss Functions

e Step 1: For a given W, decide on a

Loss Function: a measure of how much we
dislike this classifier.

 Loss Function intuition:

— loss should be large if many data points are
misclassified

— loss should be small (0?) if all data is classified
correctly.

Loss function: Ideas

<)
X

W

dog?
cat?
hablle

Softmax Classifier / Cross-Entropy
Loss: Intuition

W' x gives us a vector of scores, one per class
(each row of W is a classifier)

Wouldn’t it be nice to interpret these as
probabilities?

Softmax Classifier / Cross-Entropy
Loss: Intuition

WT x gives us a vector of scores, one per class (each
row of W is a classifier)

Wouldn’t it be nice to interpret these as probabilities?
But they’re not...

-canbe<0&=———

-don’tall sumto I———

But we can treat them as unnormalized log

probabilities.
r—\

Softmax Classifier / Cross-Entropy Loss

f=WT x gives us a vector of scores, one per
class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all
positive values, then normalize to su

p(x; is class k) =

Softmax Classifier / Cross-Entropy Loss

f=WTx gives us a vector of scores, one per
class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all
positive values, then normalize to sum to 1:

p(x; is class k) =

Cross-entropy loss: measure KL divergence

between the predicted distribution and the
true distribution:

Cross-Entropy Loss: Intuition

| Focket
m 04.@\ ¢ OviCar~y"
] — pﬂJ{&%%

)| A’IWVLLQ/
oy Ja“ulfcm& e Tese I/I/T{)Uy&vmgz

Taking stock

* We have:

unravel(rgb2gray(img)), a feature extractor

— h(x) = WT x, a multiclass linear classifier

N
— L= Z L , a loss function
i

Taking stock

 We have:
— ¢ = unravel(rgb2gray(img)), a feature extractor

— h(x) = WT x, a multiclass linear classifier
— L= , a loss function

L, =—1 el
i — — 108 ZJ ij
e We don’t have:

— a way to find a W that results in a small L.
=

Loss Functions

e Step 1: For a given W, decide on a
Loss Function: a measure of how much we
dislike this classifier.

e Step 2: use optimization to find the W that
minimizes the loss function.
— Linear regression: solvable in closed form
— Most of the time: no closed form.

Optimization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

How do we find a W that minimizes L?
e Bad idea: Random search.

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.000]
loss = L(X train, Y_train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

How’d that go for you?

Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols)
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~95%)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Finding a W that minimizes L

A better idea: walk downhill.

Slide: Fei-Fei Li. Justin Johnson. & Serena Yeung

Gradient Descent: Generally

 Gradient of the loss

function with respect to @
the weights tells us how to /

change the weights to
improve the loss.

Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # '

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Gradient Descent: Intuition

Gradient Descent: Intuition

Gradient Descent: Demo

e http://vision.stanford.edu/teaching/cs231n-
demos/linear-classify/

— select “Softmax” radio button at the bottom

Gradient Descent: Generally

 Gradient of the loss
function with respect to w.

the weights tells us how to
change the weights to
improve the loss.

e L(X; W) depends on
— All data points x;..x,
— Very expensive to evaluate

Stochastic Gradient Descent

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad

N
1
L(W N Z xza yz i)‘R(W)

L(X; W) depends on
— All data points x;..x,
— Weights W

* Very expensive to evaluate if you have a lot of
data.

Stochastic Gradient Descent

* |dea: consider only a few data points at a
time.

* Loss is now computed using only a small batch
(minibatch) of data points.

 Update weights the same way using the
gradient of L wrt the weights.

Stochastic Gradient Descent: Intuition

