CSCI 497P/597P: Computer Vision

Projective Geometry

Announcements

- Exam will be out later today, due Monday 10pm.
- Academic honesty:
- OK - any course materials
- lecture slides, notes, and videos;
- your own notes your assignment code, your HW solutions;
- the textbook
- Not OK:
- other people
- the internet at large

Goals (Today and Monday)

- Understand how lines are represented in projective space.
- Understand the duality of points and lines:
- How to calculate the line through two points
- How to check whether a point lies on a line
- Understand the derivation and significance of:
- The Epipolar plane, epipolar lines, epipoles
- The fundamental matrix
- Get a general sense for how camera parameters ($[R \mid t], K$) can be inferred from sets of feature matches.
- Know the definition of "structure from motion"

Example: A rectified stereo pair

Plane Sweep Stereo

In Practice: Because the 3D object is Planar, we can move st arbitrarily with a homograply.

1. Find the homograph
a. Unproject-Then reproject the 4 cornus of C_{l}
b. Fit a nomography from the 4 correspondences.
2. Warp the left image onto the right image
3. Compute NCC for the whole image and fill in the cost volume slice for depth d.

Let's dig into that math hack of ours...

- ("whiteboard")

Projective Geometry: Homogeneous Points

- whiteboard / lecture notes
- [x y 1] is equivalent all points [ax ay a]
- Viewed in 3D: All such points lie on a ray from $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ in the direction of $\left[\begin{array}{lll}x & y & 1\end{array}\right]$
- Projective space considers points equal if they are equivalent under projection onto a plane.

Projective Geometry: Homogeneous Lines

- (see whiteboard/ lecture notes)
- Lines can also be represented in projective space (homogeneous coordinates).
- The line equation $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ is represented using [abc].
- Lines are invariant to scale as well: [ka kb kc] is the same as [a b c] for any k != 0 .
- In the 3D view, a line represents all points on a plane through [000] whose normal is the vector [abc].

Projective Geometry: Homogeneous Lines

- (see whiteboard/ lecture notes)
- What are the homogeneous (projective) coordinates for the following lines:
- $y=-x$

Projective Geometry: Homogeneous Lines

- (see whiteboard/ lecture notes)
- What are the homogeneous (projective) coordinates for the following lines:
- $y=-x$
- $y=2 x+4$

Projective Geometry: Homogeneous Lines

- (see whiteboard/ lecture notes)
- What are the homogeneous (projective) coordinates for the following lines:
- $y=-x$
- $y=2 x+4$
- Can you write the same line with more than one 3 -vector like you can with points?

Projective Geometry: Point-Line Duality

- (see whiteboard/ lecture notes)
- The line between two points, is the normal vector of the plane spanned by their rays.
- We can get a vector normal to a plane by taking the cross product of two vectors that span the plane.
- $\mathrm{l}=\mathrm{p}_{1} \times \mathrm{p}_{2}$

Projective Geometry: Point-Line Duality

- (see whiteboard/ lecture notes)
- To find the line through two points, take the cross-product of the points' homogeneous 3vectors.
- How do you find the intersection point between two lines?

Projective Geometry:

Points on Lines, Lines through Points

- (see whiteboard/ lecture notes)
- A point $[x$ y w] is on a line if:
$-a(x / w)+b(y / w)+c=0 \quad$ (multiply both sides by $w)$
$-a x+b y+c w=0$
$-[a b c] .[x y ~ w]^{\top}=0$
- dot product!

Epipolar Geometry

- Where could a point seen by one camera appear in a second camera?

Two-view geometry

- Where do epipolar lines come from?

Fundamental matrix

- This epipolar geometry of two views is described by a Very Special 3×3 matrix \mathbf{F}, called the fundamental matrix
- \mathbf{F} maps (homogeneous) points in image 1 to lines in image 2!
- The epipolar line (in image 2) of point \mathbf{p} is: $\mathbf{F p}$
- Epipolar constraint on corresponding points: $\mathbf{q}^{T} \mathbf{F} \mathbf{p}=0$

Fundamental matrix

- Two Special points: \mathbf{e}_{1} and \mathbf{e}_{2} (the epipoles): projection of one camera into the other

Fundamental matrix

- Two Special points: \mathbf{e}_{1} and \mathbf{e}_{2} (the epipoles): projection of one camera into the other
- All of the epipolar lines in an image pass through the epipole

Epipoles

Fundamental matrix

- Why does \mathbf{F} exist?
- Let's derive it...

Fundamental matrix - calibrated case

\mathbf{K}_{1} : intrinsics of camera 1
\mathbf{K}_{2} : intrinsics of camera 2
\mathbf{R} : rotation of image 2 w.r.t. camera 1
$\tilde{\mathbf{p}}=\mathbf{K}_{1}^{-1} \mathbf{p}:$ ray through \mathbf{p} in camera 1's (and world) coordinate system
$\tilde{\mathbf{q}}=\mathbf{K}_{2}^{-1} \mathbf{q} \quad$: ray through \mathbf{q} in camera 2's coordinate system

Fundamental matrix - calibrated case

- $\tilde{\mathbf{p}}, \mathbf{R}^{T} \tilde{\mathbf{q}}$, and t are coplanar
- epipolar plane can be represented as $\mathbf{t} \times \tilde{\mathbf{p}}$

$$
\left(\mathbf{R}^{T} \tilde{\mathbf{q}}\right)^{T}(\mathbf{t} \times \tilde{\mathbf{p}})=0
$$

Fundamental matrix - calibrated case

$$
\left(\mathbf{R}^{T} \tilde{\mathbf{q}}\right)^{T}(\mathbf{t} \times \tilde{\mathbf{p}})=0
$$

$$
\tilde{\mathbf{q}}^{T} \mathbf{R}(\mathbf{t} \times \tilde{\mathbf{p}})=0
$$

Fundamental matrix - calibrated case

- One more substitution:
- Cross product with \mathbf{t} can be represented as a 3×3 matrix

$$
[\mathbf{t}]_{\times}=\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t \\
t
\end{array}\right] \quad \mathbf{t} \times \tilde{\mathbf{p}}=[\mathbf{t}]_{\times} \tilde{\mathbf{p}}
$$

Fundamental matrix - calibrated case

$$
\tilde{\mathbf{q}}^{T} \mathbf{R}[\mathbf{t}]_{\times} \tilde{\mathbf{p}}=0
$$

Fundamental matrix - calibrated case

$\tilde{\mathbf{p}}=\mathbf{K}_{1}^{-1} \mathbf{p}$
$\tilde{\mathbf{p}}=\mathbf{K}_{1}^{-1} \mathbf{p} \quad$: ray through \mathbf{p} in camera 1's (and world) coordinate system
$\tilde{\mathbf{q}}=\mathbf{K}_{2}^{-1} \mathbf{q} \quad$: ray through \mathbf{q} in camera 2's coordinate system

$$
\tilde{\mathbf{q}}^{T} \underbrace{\mathbf{R}[\mathbf{t}]} \underbrace{\tilde{\mathbf{p}}=0} \quad \tilde{\mathbf{q}}^{T} \mathbf{E} \tilde{\mathbf{p}}=0
$$

ER the Essential matrix

Cross-product as linear operator

Useful fact: Cross product with a vector \mathbf{t} can be represented as multiplication with a (skew-symmetric) 3×3 matrix

$$
\begin{gathered}
{[\mathbf{t}]_{\times}=\left[\begin{array}{ccc}
0 & -t_{z} & t_{y} \\
t_{z} & 0 & -t_{x} \\
-t_{y} & t_{x} & 0
\end{array}\right]} \\
\mathbf{t} \times \tilde{\mathbf{p}}=[\mathbf{t}]_{\times} \tilde{\mathbf{p}}
\end{gathered}
$$

Fundamental matrix - uncalibrated case

$\mathbf{K}_{1}:$ intrinsics of camera $1 \quad \mathbf{K}_{2}:$ intrinsics of camera 2
\mathbf{R} : rotation of image 2 w.r.t. camera 1

$$
\begin{aligned}
& \mathbf{q}^{T} \underbrace{\mathbf{K}_{2}^{-T} \mathbf{R}[\mathbf{t}]_{\times} \mathbf{K}_{1}^{-1} \mathbf{p}=0}_{\mathbf{K}} \\
& \mathbf{F} \longleftarrow \text { the Fundamental matrix }
\end{aligned}
$$

Properties of the Fundamental Matrix

- Fp is the epipolar line associated with \mathbf{p}
- $\mathbf{F}^{T} \mathbf{q}$ is the epipolar line associated with \mathbf{q}
- $\mathbf{F e}_{1}=\mathbf{0}$ and $\mathbf{F}^{T} \mathbf{e}_{2}=\mathbf{0}$
- \mathbf{F} is rank 2
- How many parameters does \mathbf{F} have?

Fundamental matrix song

https://www.youtube.com/watch?v=DgGV3I82NTk

