CSCI 497P/597P: Computer Vision

Projective Geometry

Announcements

- Exam will be out later today, due Monday 10pm.
- Academic honesty:
 - OK any course materials
 - lecture slides, notes, and videos;
 - your own notes your assignment code, your HW solutions;
 - the textbook
 - Not OK:
 - other people
 - the internet at large

Goals (Today and Monday)

- Understand how lines are represented in projective space.
- Understand the duality of points and lines:
 - How to calculate the line through two points
 - How to check whether a point lies on a line
- Understand the derivation and significance of:
 - The Epipolar plane, epipolar lines, epipoles
 - The fundamental matrix
- Get a general sense for how camera parameters ([R|t], K) can be inferred from sets of feature matches.
- Know the definition of "structure from motion"

Example: A rectified stereo pair

Plane Sweep Stereo

In Practice: Because the 3D object is Planar, We can move it arbitrarily with a homography. I. Find the homography a. Unproject-Then reproject the 4 corrus of Ce b. Fit a homography from the 4 correspondences.

Z. Warp the left image anto the right image 3. Compute NCC For the whole image and Fill in the cost volume slice for depth d.

Let's dig into that math hack of ours...

• ("whiteboard")

• whiteboard / lecture notes

- [x y 1] is equivalent all points [ax ay a]
- Viewed in 3D: All such points lie on a ray from [0 0 0] in the direction of [x y 1]
- Projective space considers points equal if they are equivalent under projection onto a plane.

- (see whiteboard/lecture notes)
- Lines can also be represented in projective space (homogeneous coordinates).
- The line equation ax + by + c = 0 is represented using [a b c].
- Lines are invariant to scale as well: [ka kb kc] is the same as [a b c] for any k != 0.
- In the 3D view, a line represents all points on a plane through [0 0 0] whose normal is the vector [a b c].

• (see whiteboard/lecture notes)

• What are the homogeneous (projective) coordinates for the following lines:

• (see whiteboard/lecture notes)

• What are the homogeneous (projective) coordinates for the following lines:

• y = 2x + 4

- (see whiteboard/lecture notes)
- What are the homogeneous (projective) coordinates for the following lines:
 - y = -x
 - y = 2x + 4
- Can you write the same line with more than one 3-vector like you can with points?

Projective Geometry: Point-Line Duality

• (see whiteboard/lecture notes)

- The **line** between two **points**, is the normal vector of the **plane** spanned by their **rays**.
- We can get a vector normal to a plane by taking the cross product of two vectors that span the plane.

•
$$I = p_1 \times p_2$$

Projective Geometry: Point-Line Duality

• (see whiteboard/lecture notes)

- To find the line through two points, take the cross-product of the points' homogeneous 3-vectors.
- How do you find the intersection point between two lines?

Projective Geometry: Points on Lines, Lines through Points

(see whiteboard/ lecture notes)

- A point [x y w] is on a line if:
 - a(x/w) + b(y/w) + c = 0 (multiply both sides by w)
 - -ax + by + cw = 0
 - [a b c] . [x y w][⊤] = 0
 - dot product!

Epipolar Geometry

• Where could a point seen by one camera appear in a second camera?

Two-view geometry

• Where do epipolar lines come from?

- This *epipolar geometry* of two views is described by a Very Special 3x3 matrix ${f F}$, called the *fundamental matrix*
- \mathbf{F} maps (homogeneous) *points* in image 1 to *lines* in image 2!
- The epipolar line (in image 2) of point ${f p}$ is: Fp
- Epipolar constraint on corresponding points: $\, {f q}^T {f F} {f p} = 0$

Two Special points: e₁ and e₂ (the *epipoles*): projection of one camera into the other

Fundamental matrix

- Two Special points: e₁ and e₂ (the *epipoles*): projection of one camera into the other
- All of the epipolar lines in an image pass through the epipole

Epipoles

Fundamental matrix

- Why does **F** exist?
- Let's derive it...

- $\tilde{\mathbf{p}}$, $\mathbf{R}^T \tilde{\mathbf{q}}$, and \mathbf{t} are coplanar
- epipolar plane can be represented as $\mathbf{t} \times \tilde{\mathbf{p}}$

$$(\mathbf{R}^T \tilde{\mathbf{q}})^T (\mathbf{t} \times \tilde{\mathbf{p}}) = 0$$

- One more substitution:
 - Cross product with t can be represented as a 3x3 matrix

$$\begin{bmatrix} \mathbf{t} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}$$

$$\mathbf{t} imes \tilde{\mathbf{p}} = \left[\mathbf{t}\right]_{ imes} \tilde{\mathbf{p}}$$

 $\tilde{\mathbf{q}}^T \mathbf{R} (\mathbf{t} \times \tilde{\mathbf{p}}) = 0$ $\tilde{\mathbf{q}}^T \mathbf{R} [\mathbf{t}]_{\times} \tilde{\mathbf{p}} = 0$

Cross-product as linear operator

Useful fact: Cross product with a vector **t** can be represented as multiplication with a (*skew-symmetric*) 3x3 matrix

Properties of the Fundamental Matrix

- ${\bf F} {\bf p}$ is the epipolar line associated with ${\bf p}$
- $\mathbf{F}^T \mathbf{q}$ is the epipolar line associated with \mathbf{q}
- $\mathbf{F}\mathbf{e}_1 = \mathbf{0}$ and $\mathbf{F}^T\mathbf{e}_2 = \mathbf{0}$

• \mathbf{F} is rank 2

• How many parameters does **F** have?

Fundamental matrix song

https://www.youtube.com/watch?v=DgGV3l82NTk