CSCI 497P/597P: Computer Vision Scott Wehrwein

Intrinsics, Extrinsics, and Stereo 1: Depth from Disacity

Goals

- Know a general projection matrix can be decomposed into intrinsics and extrinsics
- Understand how to calculate depth from disparity in a rectified stereo image pair.

Announcements

- Better notes on spherical warping are linked from last Friday's lecture on the course webpage.
- Takehome exam Friday-Monday, to cover material through last week.

Spherical reprojection

input

$\mathrm{f}=\mathbf{2 0 0}$ (pixels)

$\mathrm{f}=\mathbf{4 0 0}$

$\mathrm{f}=\mathbf{8 0 0}$

- Map image to spherical coordinates
- need to know the focal length

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
- How does this change the spherical image?

360 Problems: Drift

- Error accumulation
- small errors accumulate over time

360 Problems: Drift

360 Problems: Drift

- Solutions
- add another copy of first image at the end
- this gives a constraint: $y_{n}=y_{1}$
- there are a bunch of ways to solve this problem
- add displacement of $\left(y_{1}-y_{n}\right) /(n-1)$ to each image after the first
- apply an affine warp: $\mathbf{y}^{\prime}=\mathbf{y +} \boldsymbol{a x}^{x}$
- run a big optimization problenh, incorporating this constraint
- best solution, but more complicated
- known as "bundle adjustment"

Panoramas require a common COP

Camera(s) without a common COP

- With panoramas, we always assumed a common COP.
- How can we model the geometry of a camera in a separate world coordinate system?

Two important coordinate systems:

1. World coordinate system

2. Camera coordinate system How do we project a given point (x, y, z) in world coordinates?

Projection matrix

Intrinsic Camera Parameters

- Everything you need to get from camera coordinates to pixel coordinates: 4-to-3

- Getting more general:

$$
\mathbf{K}=\left[\begin{array}{ccc}
-f & s & c_{x} \\
0 & -\alpha f & c_{y} \\
0 & \nearrow 0 & 1
\end{array}\right]
$$

Intrinsic Camera Parameters

Everything you need to get from camera coordinates to pixel coordinates:

α : aspect ratio (1 unless pixels are not square)
S : skew (0 unless pixels are shaped like rhombi/parallelograms)
$\left(c_{x}, c_{y}\right):$ principal point $((0,0)$ unless optical axis doesn't intersect projection plane at origin)

Camera(s) without a common COP

- With panoramas, we always assumed a common COP.
- How can we model the geometry of a camera in a separate world coordinate system?

Two important coordinate systems:

1. World coordinate system

2. Camera coordinate system How do we project a given point (x, y, z) in world coordinates?

3. Transkate $(0,0)_{c}$ to $(0,0)$

$$
\left[\begin{array}{c}
x_{c} \\
y_{l} \\
z_{c} \\
1
\end{array}\right]=\left[\begin{array}{lll}
R_{3 \times 3} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{w} \\
0 & 1 & 0 & -y_{w} \\
0 & 0 & 1 & -z_{w} \\
0 & 0 & 0 & 1
\end{array}\right] \hat{p}
$$

Extrinsic Camera Parameters

- Everything you need to get from world coordinates to camera coordinates

$$
K\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & 0 \\
0 \\
0 & 0
\end{array} 0 \quad 1 .\left[\begin{array}{ccc}
\mathbf{I}_{3 \times 3} & -\mathbf{C} \\
0 & 0 & 0
\end{array}\right]\right.
$$

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by -c
How do we represent translation as a matrix multiplication?

$$
\mathbf{T}=\left[\begin{array}{ccc}
\mathbf{I}_{3 \times 3} & -\mathbf{c} \\
0 & 0 & 0
\end{array}\right]
$$

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Extrinsics

- How do we get the camera to "canonical form"?
- (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Projection matrix: Putting it all together

This part converts 3D points in world coordinates to 3D rays in the camera's coordinate system. There are 6 parameters represented (3 for position/translation, 3 for rotation).

The \mathbf{K} matrix converts 3D rays in the camera's coordinate system to 2D image points in image (pixel) coordinates.

Projection matrix

What happens when cameras have different COPs?

Stereo

- Given two images from different viewpoints
- How can we compute the depth of each point in the image?
- Based on how much each pixel moves between the two images

Hypothesis generation time: what relationship do you expect to find between depth and how much a pixel moves?

Depth from disparity

$$
\text { disparity }=x-x^{\prime}=\frac{\text { baseline } * f}{z}
$$

