CSCI 497P/597P: Computer Vision

Lecture 18
Pinhole Camera Model 360 (Spherical) Panoramas

Announcements

- Deadline to pair up for P2 is Wednesday night.
- Include your github usernames in your email.
- Reminder/597 update: Letter grade surveys
- 497: opt in for letter grade by June 5
- 597 opt in for P/NP by May 22

Goals

- Understand where images come from (under the pinhole camera model)
- Be able to derive the 3×4 pinhole projection matrix
- Understand the interpretation of planar panorama stitching in terms of using homographies to map images onto a common plane.
- Know how to create 360 degree panoramas by mapping images onto a spherical surface instead.

Can we make 360 panoramas?

To answer this, we need to know how these images came to be. Why can we even make any panoramas with homographies?

Where do images come from?

497Cam, Mk I

497Cam, Mk II

Camera Obscura (pinhole camera)

The Effect of Pinhole Size

Aside: What about Lenses?

497Cam, Mk III

CoolOptical|llusions.com

The Pinhole Camera Model

- 497Cam, Mk II:

- 497Cam, Mk IIM: ${ }^{\text {ath }}$

Projection in a Pinhole Camera

$y^{\prime}=-\frac{f y}{z}$
$x^{\prime}=-\frac{f x}{2}$

$$
z^{\prime}=-\mathcal{C}
$$

\leftarrow these are 3D (non homogeneous) Coordinates.
In the image, the coordinates will be: $\left[\begin{array}{r}-f_{x} \\ \frac{f y}{z} \\ 1\end{array}\right]$ because if we divide out the f, all comas would have $f=1$:

Projection in a Pinhole Camera
scott fails 15 th grade:

- Dr. Swenton's (15th grade) way:

Reinterpreting Homographies

A $\mathbf{3 \times 3}$ linear transformation, applied to a projection plane.

Reinterpreting Homographyaligned Panoramas

- Several image planes are warped (projected) onto a common image plane.

I'll ask it again:

Can we make 360 panoramas?

Spherical Panoramas

Idea: project images onto a sphere instead of a plane.

What motion model do we use?

