CSCI 497P/597P: Computer Vision

Lecture 16

Fitting Transformations with Outliers:
RANdom SAmple Consensus (RANSAC)

Announcements

- P2 is out
- Do you want the option to work in pairs?

Goals

- Understand the Random Sample Consensus (RANSAC) algorithm.
- Be prepared to implement RANSAC to fitting image coordinate transforms using matches that may contain outliers.

Warping

We've found correspondence.
How do we fit a transformation to a given set of matches?

Warping

We've found correspondence.
How do we fit a transformation to a given set of matches? Analogy: fit a line to a given set of points?

Warping

We've found correspondence.
How do we fit a transformation to a given set of matches? Analogy: fit a line to a given set of points?

This is a model-fitting problem.

Problem Statement: Last time

 (imperfect)Given a set of feature matches, how do I find the transformation that relates the two images?

Fitting a Homography: TL;DM

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Fitting a Homography: TL;DM

- For each feature match $\left(x_{i}, y_{i}\right)-->\left(x_{i}^{i}, y_{i}^{\prime}\right)$, fill in 2 rows of A as in:
- Solve the homogeneous least squares problem: $\min _{h}\|A h\|^{2}$

$$
\begin{aligned}
& s \rightarrow 9 \times 1 \\
& \varepsilon
\end{aligned}
$$

Take the SVD of A to get U, S, and V

- Let $h=$ the column of V (row of V^{\top}) whose column (row) index is the same as that of the smallest diagonal entry of S.
- Reshape h into $\mathrm{H}_{3 \times 3}$ and divide by the bottom-right entry.

Problem Statement: Last time

 (imperfect*)Given a set of feature matches, how do I find the transformation that relates the two images?
translation? affine?

* allpeints off by $a b, t$ homography?

When does least squares work well?

Problem Statement: Today (imperfect*)

Given a set of feature matches, how do I find the transformation that relates the two images?

* a few points are outliers

$$
\Downarrow
$$

How could we fit a line to this data?

An idea

- If I have a hypothesis, I can tell how "good" it is:
- Count the number of points that are close to the line (inliers)

An idea

- If I have a hypothesis, I can tell how "good" it is:
- Count the number of points that are close to the line (inliers)
- Algorithm: generate all possible lines and pick the one with the most inliers
- Runtime:

Another idea

- If I have a hypothesis, I can tell how "good" it is:
- Count the number of points that are close to the line (inliers)
- Algorithm: generate many random lines and pick the one with the most inliers.
- Questions:
- How many lines? Which ones? How do I measure "inlierness"?
$s=2$

The key

- Points that fit the model will agree.
- Points that don't fit the model will all be wrong in their own unique ways, and there won't be a very large set of them that agree with each other.
"All good matches are alike; every bad match is bad in its own way."
-Tolstoy, as misquoted by Alyosha Efros

Rausict The Algorithm
For $i=0 . k$:
$d_{i} \leftarrow S$ rondom dala points
$M_{i} \in$ fit_model (di) modeldition olesenvation $^{\text {m }}$
inlier_count $\in \sum\left(\frac{\mathbb{1}}{\uparrow}\left(\sim M\left(x_{i}\right)-y_{i}<\delta\right)\right)$
if inlier.count ybest -count:
best-count c inlier.count
best. $M \in M_{i}$
best. data $\in\left\{x_{i}, y_{i}:\left|M\left(x_{i}\right)-y_{i}\right|<\delta\right\}$
M. Rinal \leqslant fit-model (best-data)

Choose Parameters:
f-inlier threshold assume Gaussian noise $\delta \in \sigma, 2 \sigma$

K: iterations - guess, or assume fraction of intens and acceptable porsobility of pinking a set of all inliers.

Questions Remain

- How do we generate a hypothesis for transformations?

Questions Remain

- How do we generate a hypothesis for transformations?
S : Smallest number of points that can fully determine your model. Or: \# of degrees of freedom.
Linear Regression? 2 points fit a line.

Translation? 1 match determines $\left(t_{x}, t_{y}\right)$

A fine?
 smallest n withoutteing under determined: 3

Homography? Awkward: A is $2 n \times 9$ but has only 8 DOE
Turns out: SUD works on 8×9 A:

Same argument applies, so
A_{88} uses 4 matches, 2 residuals per match.
$T L D M: s=[D O F / 2]$

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

do not!
 Questions, Remain

- How do we choose the parameters?
- k (\# iterations)
- s (\# data points needed to fit a model)
- δ (inlier threshold)

