
CSCI 497P/597P: Computer Vision

Lecture 15
Fitting Transformations with Outliers:

RANdom SAmple Consensus (RANSAC)

Announcements
• P2 is out

• Do you want the option to work in pairs?

Goals
• Understand the Random Sample Consensus

(RANSAC) algorithm.

• Be prepared to implement RANSAC to fitting image
coordinate transforms using matches that may
contain outliers.

Warping

We've found correspondence.
How do we fit a transformation to a given set of matches?

Warping

We've found correspondence.
How do we fit a transformation to a given set of matches?
Analogy: fit a line to a given set of points?

Warping

We've found correspondence.
How do we fit a transformation to a given set of matches?

This is a model-fitting problem.
Analogy: fit a line to a given set of points?

Problem Statement: Last time
Given a set of feature matches, how do I find the
transformation that relates the two images?

(imperfect)

translation?
affine?
homography?

Fitting a Homography: TL;DM

2n × 9 9 2n

=

Fitting a Homography: TL;DM
• For each feature match (xi, yi) --> (xi', yi'), fill in 2 rows of A

as in:

• Solve the homogeneous least squares problem: 
minh ||Ah||2

• Take the SVD of A to get U, S, and V
• Let h = the right singular vector of A whose singular value is smallest.
• Let h = the column of V (row of VT) whose column (row) index is the

same as that of the smallest diagonal entry of S.

• Reshape h into H3x3 and divide by the bottom-right entry.

Problem Statement: Last time
Given a set of feature matches, how do I find the
transformation that relates the two images?

(imperfect*)

translation?
affine?
homography?

When does least squares work well?

Problem Statement: Today
Given a set of feature matches, how do I find the
transformation that relates the two images?

(imperfect*)

How could we fit a line to this
data?

An idea
• If I have a hypothesis, I can tell how "good" it is:

• Count the number of points that are close to the line (inliers)

An idea
• If I have a hypothesis, I can tell how "good" it is:

• Count the number of points that are close to the line (inliers)

• Algorithm: generate all possible lines and pick the
one with the most inliers

• Runtime:

Another idea
• If I have a hypothesis, I can tell how "good" it is:

• Count the number of points that are close to the line (inliers)

• Algorithm: generate many random lines and pick
the one with the most inliers.

• Questions:

• How many lines? Which ones? How do I measure "inlierness"?

The key
• Points that fit the model will agree.

• Points that don't fit the model will all be wrong in
their own unique ways, and there won't be a very
large set of them that agree with each other.

“All good matches are alike; every bad
match is bad in its own way.”
-Tolstoy, as misquoted by Alyosha Efros

The Algorithm

Questions Remain
• How do we generate a hypothesis for transformations?

Questions Remain
• How do we generate a hypothesis for transformations?

s = DOF//2

Questions Remain
• How do we choose the parameters?

• k (# iterations)

• s (# data points needed to fit a model)

• ! (inlier threshold)

