CSCI 497P/597P: Computer Vision
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Announcements



Goals

e Know the definition of a projective (homography)
transformation, and gain some geometric intuition for
what it represents in 2D.

o Understand the meaning of homogeneous points at infinity.

o Know why a homography has 8 degrees of freedom, not 9 [hw2]

e Know how to find a least-squares best-fit
transformation for the given models:
translation, affine, homography



Transformations: Linear
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o Properties:

e Lines map to lines

e Parallel lines remain parallel

e Ratios of lengths along lines are preserved

e Closed under composition linear

» Origin maps to origin




Transformations: Affine

Properties:

X a b [c
yi=|d e \f
0 O

|

Lines map to lines

Parallel lines remain parallel

Ratios of lengths along lines are preserved
Closed under composition

Origin does not necessarily map to origin

affine
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Transformations: Projective
(Homography)
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Properties:

e Lines map to lines

o Parallel lines do not remain parallel

e Ratios of lengths along lines are not preserved.
e Closed under composition

e Origin does not necessarily map to origin

projective




Homogeneous Coordinates:

ntuition for our math hack

A 3-vector belongs to a family of 3-vectors
representing the same 2D point.

1D example, for intuition: A 2-vector belongs to a
family of 2-vectors representing the same 1D point.
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What are we looking at?
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ransformations: A Hierarchy
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translation [ I ‘ t ]2 ; 2 orientation + - - -
22X
rigid (Euclidean) [ R ‘ t ]2 ; 3 lengths + - - - Q
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similarity [ sR ‘ t ]2 ; 4 angles + - - - Q
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projective [ H ]3x‘3 8 straight lines Q




Homographies for image alignment







Why the 1 in the bottom right?
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Prove on HW2: For any 3x3 matrix H, there exists another 3x3
matrix H' which:

 Hasa 1inthe bottom-right corner

* Has the same effect on homogeneous points.



Why the 1 in the bottom right?
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Prove on HW2: For any 3x3 matrix H, there exists another 3x3
matrix H' which:

 Hasa 1inthe bottom-right corner

* Has the same effect on homogeneous points.

Fixing the 1 is merely a convention.
Another convention: values in H as a vector have magnitude 1.



Why the 1 in the bottom right?
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Prove on HW2: For any 3x3 matrix H, there exists another 3x3
matrix H' which:

 Hasa 1inthe bottom-right corner

* Has the same effect on homogeneous points.

Consequently:
 homographies have 8 degrees of freedom (DOF).

e affine transformations have 6 DOF
* translations have 2 DOF



About those parallel lines...

The homography H transforms o
left image to the right image.
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Next up:

(imperfect)

Given a set ofzfeature matches, how do | find the
transformation that relates the two images?




Image Alignment: Translation
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