CSCI 497P/597P: Computer Vision

Lecture 14 Homogeneous Points Intuition Fitting Transformations

Announcements

Goals

- Know the definition of a projective (homography) transformation, and gain some geometric intuition for what it represents in 2D.
 - Understand the meaning of homogeneous points at infinity.
 - Know why a homography has 8 degrees of freedom, not 9 [hw2]
- Know how to find a least-squares best-fit transformation for the given models: translation, affine, homography

Transformations: Linear

- Properties:
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios of lengths along lines are preserved
 - Closed under composition

linear

• Origin maps to origin

Transformations: Affine

- Properties:
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios of lengths along lines are preserved
 - Closed under composition
 - Origin **does not** necessarily map to origin

affine

Transformations: Projective (Homography)

- Properties:
 - Lines map to lines
 - Parallel lines **do not** remain parallel
 - Ratios of lengths along lines are **not** preserved.
 - Closed under composition
 - Origin **does not** necessarily map to origin projective

Homogeneous Coordinates: Intuition for our math hack

A 3-vector belongs to a **family** of 3-vectors representing the same 2D point.

1D example, for intuition: A 2-vector belongs to a **family** of 2-vectors representing the same 1D point.

What are we looking at?

Transformations: A Hierarchy

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c} I & t \end{array} igg]_{2 imes 3} igg]$	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} m{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Homographies for image alignment

Why the 1 in the bottom right?

$$\left[\begin{array}{cccc}a&b&c\\d&e&f\\g&h&1\end{array}\right]$$

Prove on HW2: For any 3x3 matrix *H*, there exists another 3x3 matrix *H*' which:

- Has a 1 in the bottom-right corner
- Has the same effect on homogeneous points.

Why the 1 in the bottom right?

$$\left[\begin{array}{cccc}a&b&c\\d&e&f\\g&h&1\end{array}\right]$$

Prove on HW2: For any 3x3 matrix *H*, there exists another 3x3 matrix *H*' which:

- Has a 1 in the bottom-right corner
- Has the same effect on homogeneous points.

Fixing the 1 is merely a convention.

Another convention: values in H as a vector have magnitude 1.

Why the 1 in the bottom right?

Prove on HW2: For any 3x3 matrix *H*, there exists another 3x3 matrix *H*' which:

- Has a 1 in the bottom-right corner
- Has the same effect on homogeneous points.

Consequently:

- homographies have 8 degrees of freedom (DOF).
- affine transformations have 6 DOF
- translations have 2 DOF

About those parallel lines...

The homography H transforms points from the left image to the right image.

NOT aposity y

What is $H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$? 01-010

Next up:

(imperfect)

Given a set of feature matches, how do I **find** the

transformation that relates

Image Alignment: Translation $\mathcal{T}_{\mathcal{I}}$

$$E_x = X_1^2 - X_1$$

 $E_y = Y_1^2 - Y_1$

 $\overline{)}'$

Mutiple Matthes?

Multiple Materes: Linear Algebra Edition! Goal: Minimise difference between $\frac{\int (x_{i}^{*})}{\langle y_{i}^{*} \rangle} = \frac{\int (x_{i} + t_{x})}{\langle y_{i} + t_{y}}$

 $\langle C$ $\left(\epsilon_{\star} - (\chi_{i}) - \chi_{i} \right)$ MUJENONAS MÍN С 2nx1 21 $t_{x} - (X_{1} - X_{1})$ $t_{y} - (y_{1}, -y_{1})$ χ, - χ, - x, | y,`-Y, | x': -` t, \mathcal{N}

Solving min $||Ax-b||^2$

Math Class: normal equations

 $(A^T A)$ $(A^T A) x = A^T b$

On a computer: Np. linelg. 1stsg (A,b)