CSCI 497P/597P: Computer Vision

Lecture 11: Image Features Feature Matching Forward and Inverse Warping

Announcements

- Feedback survey
- · HWI is due Wednesday

Goals

- Know how and why to **match** features using:
 - The simple SSD metric
 - The ratio test
- Understand the mathematical framework for (lineare) geometric transformations on images (image warping).
- Understand the differences between forward and inverse warping.

Running motivational example: Panorama Stitching

1. Detect Harris Corners

1. Detect Harris Corners

2. Describe features

3. Match Features

At this point, a "feature" has:

- 1. A keypoint: its position in one of the images
- 2. A descriptor: a vector of numbers that 'captures' its characteristics

Feature Matching

Image 1 features: $\overline{L} = \{ f_{z}, f_{z}, \dots \}$

Image 2 features:

 $F2 = \int f^2 f^2 \cdots J$

Matching Algorithm

F1 = detect_describe(img1)

F2 = detect_describe(img2)

for f1 in F1:

find f2 that minimizes d(f1, f2)

add (f1, f2) to matches

But what if we're wrong?

feature distance

• Answer #1: Threshold on match score

Matching Algorithm

F1 = detect_describe(img1)

F2 = detect_describe(img2)

for f1 in F1:

find f2 that minimizes d(f1, f2)if d(f1, f2) < T (hold pup) fically

add (f1, f2) to matches

Distance Metrics

What should we use for **d** in **d**(f1, f2)? SSD Sum of Sum of Subred Preformes $||f_1 - f_2||^2 = \sum_{i=1}^{2} ||f_i - f_i|^2$

Distance Metrics

Sidenote: efficiently computing SSD

 $np.sum((1-p2)**2) \subset$ $v_{is} = d. dot(d)$

A problem with SSD

A problem with SSD

A problem with SSD

Ratio test - Intuition

We want a metric that gives small distance when features are

- like each other (according to SSD), but
- not like any others

"Ratio Test" distance metric

fz = closesf SSD fz': second closesf

f1's closest match is still f2, but the distance between them is different

Matching Algorithm

- F1 = detect_describe(img1)
- F2 = detect_describe(img2)
- for f1 in F1:
 - f2 = closest match according to SSD
 - f2' = second-closest match according to SSD

if SSD(f1, f2) / SSD(f1, f2') < T

```
add (f1, f2) to matches
```

But what if we're wrong?

Decreasing the threshold T gives fewer **false positives** but also fewer **true positives**.

But what if we're wrong?

Many good matches, but still a few **outliers**.

Let's suppose we were never wrong.

We have a **perfect** set of feature matches.

2. Warp Iz into Is coords

Filtering vs Warping

Parametric (global) Warping

• Apply the same function to all coordinates.

p = (x,y) T transforms *image coordinates* **p'** = (x',y')

x', y' = T(x, y)

What is function T describes the transformation between these? $W^{W+1} \leq T^{2}, \quad X' \leq 2X \leq T^{2}$ $Y' = ZY \leq T^{2}$

Linear Transformations

• Linear means matrices, right?

What can we do with these?

SCALC Uniformin $\begin{bmatrix} 0 & z \\ z & 0 \end{bmatrix} = \begin{bmatrix} z & 0 \end{bmatrix}$ 6725

$$\leq = \begin{pmatrix} S_{x} & 0 \\ O & S_{y} = 1 \end{pmatrix}$$

