CSCIl 497P/ er Vision

Lecture 7:
Upsampling
A whirlwind tour of numpy

Announcements

e Project 1 out Very Soon(TM)

e i.e. bythe end of the weekend

Goals

e Know how to upsample images naively

e Know how to upsample images using reconstruction
filters.

e Know the basics of how to use the numpy library

Reconstruction

levels = reverse(levels)

img = levels[0]

for i i . evels):
img = scale 2x(img
img += L;

Upsampling
e But how do we make images bigger?

e Again: a naive way and a principled way.

levels = reverse(levels)

img = levels[0]

for i in l..len(levels):
img = upscale 2x(img)
img += L;

Upsampling

e Thisimage is too small for my screen. How do |
make it 10x bigger?

Upsampling

e Thisimage is too small for my screen. How do |
make it 10x bigger?

e Simple approach: repeat each row and column 10
times

Upsampling: Interpolation

e Another way to look at this: we need to double the sampling rate.

Upsampling: Interpolation

e Another way to look at this: we need to double the sampling rate.

e Butwe don't actually know the continuous function:

Upsampling: Nearest Neighbor

Upsampling: Linear

ifndl

Yo

Upsampling: Linear

A filtering perspective

4
<‘—,

NICH
) { >
I\
|
(
N\) G
] !
/
/& NS
—————o
[-]
Q
v
=

Upsampling: Nearest Neighbor

A filtering perspective

Upsampling Filters in 2D

2AANEZEN

) 11211
—12 4|2
IC 1|21

1D: 7/\ oD: i i tent filter

Upsampling by 4X %

1. Make
AHx4W
image of
Zeros.

2. Fill in every
4th pixel

3. Filter*!

*and multiply by 16

numMpy

e Tutorials:

e https://numpy.org/devdocs/user/quickstart.htm|

e https://cs231n.github.io/python-numpy-tutorial/#numpy

e Demol!

e Exercises

Demol!

« Feel free to follow along

ssh -p 922 username@labs.cs.wwu.edu

wget https://facultyweb.cs.wwu.edu/~wehrwes/
courses/cscid97p 20s/lectures/L07 np/van.png

ipython3

import numpy as np
e« Demo and image files at:

e https://facultyweb.cs.wwu.edu/~wehrwes/courses/
csci497p 20s/lectures/LO7 _np/

Exercises!

e Also available at

1. Suppose a is a filter and b is a patch of an
image:
a = np.array([1l, 2, 1],
[2, 4, 2],
[1, 2, 111) / 16
b = np.zeros((3,3))
b[:3,0] = 1
b[l,1] = 2

a. Compute the output pixel in a convolution
when the filter a overlaps the image
neighborhood b. Use array operations and the
sum function.

b. Compute the same product as above, but
using the dot function. Hint: you'll need to
reshape the inputs to dot first!

2. Load the van.png image and save out a grayscale
version computed by averaging the three color
channels; be sure to do the averaging in floating-point

3a.Load the van image do a naive 2x subsampling:
drop every other row and column and save out the
half-size version.

3b. Load the van image and do a naive 2x
upsampling: repeat every other row and column
twice.

