
CSCI 497P/597P: Computer Vision

Lecture 7:
Upsampling

A whirlwind tour of numpy

Announcements
• Project 1 out Very Soon(TM)

• i.e., by the end of the weekend

Goals
• Know how to upsample images naively

• Know how to upsample images using reconstruction
filters.

• Know the basics of how to use the numpy library

Reconstruction
 L0

 L1
 L2

 L3 L4 L5

levels = reverse(levels)
img = levels[0]
for i in 1..len(levels):
 img = upscale_2x(img)
 img += Li

Upsampling
• But how do we make images bigger?

• Again: a naive way and a principled way.

levels = reverse(levels)
img = levels[0]
for i in 1..len(levels):
 img = upscale_2x(img)
 img += Li

Upsampling
• This image is too small for my screen. How do I

make it 10x bigger?

Upsampling
• This image is too small for my screen. How do I

make it 10x bigger?

• Simple approach: repeat each row and column 10
times

Upsampling: Interpolation
• Another way to look at this: we need to double the sampling rate. 

1 2 3 4 5

1 2 3 4 5

Upsampling: Interpolation
• Another way to look at this: we need to double the sampling rate.

• But we don't actually know the continuous function:

Upsampling: Nearest Neighbor

Upsampling: Linear

Upsampling: Linear
A filtering perspective

Upsampling: Nearest Neighbor
A filtering perspective

Upsampling Filters in 2D

1D: 2D: "tent filter"

1 2 1

2 4 2

1 2 1

Upsampling by 4X

1. Make
4Hx4W
image of
zeros.

2. Fill in every
4th pixel

3. Filter*!
*and multiply by 16

numpy
• Tutorials:

• https://numpy.org/devdocs/user/quickstart.html

• https://cs231n.github.io/python-numpy-tutorial/#numpy

• Demo!

• Exercises

Demo!
• Feel free to follow along

ssh -p 922 username@labs.cs.wwu.edu
wget https://facultyweb.cs.wwu.edu/~wehrwes/
courses/csci497p_20s/lectures/L07_np/van.png
ipython3
import numpy as np

• Demo and image files at:

• https://facultyweb.cs.wwu.edu/~wehrwes/courses/
csci497p_20s/lectures/L07_np/

Exercises!
• Also available at

1. Suppose a is a filter and b is a patch of an
image:
a = np.array([1, 2, 1],
 [2, 4, 2],
 [1, 2, 1]]) / 16
b = np.zeros((3,3))
b[:3,0] = 1
b[1,1] = 2

a. Compute the output pixel in a convolution
when the filter a overlaps the image
neighborhood b. Use array operations and the
sum function.

b. Compute the same product as above, but
using the dot function. Hint: you'll need to
reshape the inputs to dot first!

2. Load the van.png image and save out a grayscale
version computed by averaging the three color
channels; be sure to do the averaging in floating-point

3a.Load the van image do a naive 2x subsampling:
drop every other row and column and save out the
half-size version.

3b. Load the van image and do a naive 2x
upsampling: repeat every other row and column
twice.

