Lecture 5:
Sobel Filter
Image Frequency Content
Downsampling and Gaussian Pyramids

Laplacian Pyramids
Upsampling
Announcements
Goals

• Know how and why to construct a Gaussian Pyramid

• Know how and why to construct a Laplacian Pyramid

• Know how to upsample images naively

• Know how to upsample images using reconstruction filters.

 • Understand how to upsample using bilinear interpolation and how it relates to reconstruction filters.
Image Subsampling

Why does this look so crufty?
Subsampling: Another example

Source: Fredo Durand
Aliasing

https://en.wikipedia.org/wiki/Wagon-wheel_effect
Aliasing

- Let's look back at our highest-frequency scanline:

- If we need to represent this image with only 6 pixels (half size), What's the "right" (i.e., best we can do) answer?
Aliasing

• Let's look back at our highest-frequency scanline:

• If we need to represent this image with only 6 pixels (half size), What's the "right" (i.e., best we can do) answer?

• If we walked far away, what we'd see is:
Aliasing

- Let's look back at our highest-frequency scanline:

- If we need to represent this image with only 6 pixels (half size), What's the "right" (i.e., best we can do) answer?

- If we walked far away, what we'd see is:

- Subsample that, and we get:
Downsampling

Blurring *removes* high frequencies.

So, to make an image smaller:
1. blur *(pre-filter)* the image
2. *then* subsample it.

\[
\text{F}_0: \text{Original image} \\
\text{F}_1: \text{Downsampled image}
\]
Downsampling with Gaussian Pre-filtering
Downsampling with Gaussian Pre-filtering

with

without

1/2 1/4 1/8
Gaussian Pyramid

To create a multi-scale representation of an image, repeat:

1. Store
2. Blur
3. Subsample
Gaussian Pyramid

A more pyramid-shaped view:
Gaussian Pyramid

A more pyramid-shaped view: A storage-oriented view:

Level 4
1/16 resolution

Level 3
1/8 resolution

Level 2
1/4 resolution

Level 1
1/2 resolution

Level 0
Original image
Gaussian Pyramid: But why?

- You have a (edge, object, whatever) detector. You want to run it at multiple scales:

Image source: Baris Sumengen
Gaussian Pyramid: But why?

- You have a (edge, object, whatever) detector. You want to run it at multiple scales:
Some terminology

From the signal processing / electrical engineering field:

- A **low-pass filter** preserves low frequencies and eliminates (or attenuates) high frequencies.

- A **high-pass filter** preserves high frequencies and eliminates (or attenuates) low frequencies.

(We could also derive a single filter to accomplish this)
Frequency content in a Gaussian Pyramid

This is (secretly) a Gaussian Pyramid:
Frequency content in a Gaussian Pyramid

This is (secretly) a Gaussian Pyramid:

Frequency-ometer:
Frequency content in a Gaussian Pyramid

This is (secretly) a Gaussian Pyramid:

Frequency-ometer:
High-pass filter

\(f * h \)
Subsample, then
High-pass filter again!
...and again!
The Laplacian Pyramid

for i in levels[:-1]:
 L_i = hipass(f)
 f = downsample(f)
The Laplacian Pyramid

for i in levels[:-1]:
 \(L_i = \text{hipass}(f) \)
 \(f = \text{downsample}(f) \)
The Laplacian Pyramid

for i in levels[:-1]:
 $L_i = \text{hipass}(f)$
 $f = \text{downsample}(f)$
for i in levels[:-1]:
 L_i = hipass(f)
 f = downsample(f)

*Special case: highest level is just the most-blurred image.
Reconstruction

levels = reverse(levels)
img = levels[0]
for i in 1..len(levels):
 img = upscale_2x(img)
 img += L_i
Levels = reverse(levels)
img = levels[0]
for i in 1..len(levels):
 img = upscale_2x(img)
 img += L_i
Upsampling

• But how do we make images bigger?

• Again: a naive way and a principled way.

```python
levels = reverse(levels)
img = levels[0]
for i in 1..len(levels):
    img = upscale_2x(img)
    img += L_i
```
Upsampling

• This image is too small for my screen. How do I make it 10x bigger?
Upsampling

- This image is too small for my screen. How do I make it 10x bigger?

- Simple approach: repeat each row and column 10 times