CSCI 497P/597P: Computer Vision

Lecture 5: Sobel Filter Image Frequency Content Downsampling and Gaussian Pyramids

Announcements

• Project 1 is not out yet.

Goals

- Understand how the Sobel filter works to detect edges in noisy images.
- Have an intuitive understanding of what constitutes high frequency and low frequency image content.
- Know how to make images smaller:
 - The naive way via subsampling (and why this is bad)
 - The better way by prefiltering (and why this is better)
- Understand how and why to construct a Gaussian Pyramid

An edge is an "intensity cliff" with rapid rate of change (derivative)

f(x,y) as brightness

f(x,y) as height

What is the edge **strength**? What is the edge **direction**?

Image Gradient: Visually

Aside: why are the derivatives grayish, not blackish?

Jobson & Manhard

- Images are nonnegative
- Derivatives can be negative!
- Scale and shift derivative values to display in the range 0-255
 - Gray is zero, darker is negative, lighter is positive

Images (still) aren't perfect

Images (still) aren't perfect

A solution: smooth (blur!) it first

An Edge Detection Filter

• Blur, then take the derivative:

An Edge Detection Filter

*

• Blur, then take the derivative:

f

*

1	2	1	
2	4	2	
1	2	1	

0	0	0
-1	0	1
0	0	0

Or, do the composition in the continuous domain then build a discrete approximation:

$$G_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}$$
$$G'_{\sigma}(x) = \frac{d}{dx} G_{\sigma}(x) = -\frac{1}{\sigma} \left(\frac{x}{\sigma}\right) G_{\sigma}(x)$$

Sobel filter: a 3x3 approximation of the DoG:

1	1	2	1
8	0	0	0
-	-1	-2	-1

Sobel filter: example

input

x sobel filtered

y sobel filtered

Sobel filter: example

Questions?

Let's talk about waves

- Frequency of a wave (e.g., a sine wave): how quickly does it cycle?
- A lower frequency wave:

• A higher frequency wave:

Let's talk about waves

• We can add waves of different frequencies to get more complicated functions:

Let's talk about waves

(or: the least formal treatment of Fourier analysis you'll ever see)

 It turns out: you can take **any** function and build it out of waves!

For the pictures (but you can read the math if you'd like!) <u>https://www.mathsisfun.com/calculus/fourier-series.html</u>

This is the Fourier decomposition

"Frequency content" of a signal

Refers to the coefficients of each frequency component. \overline{Coe}

Let's talk about images

A scanline is a 1D function - we can build it out of waves!

Let's talk about images

A scanline is a 1D function - we can build it out of waves! Also (presented without proof): All of this generalizes to 2D.

- Here's a 1D image (or scanline):
- Design a scanline with the **most** possible high frequency content:

• Design a scanline with the **least** possible high frequency content:

Back to our definitions of image...

• Our digital image is a discrete, sampled version of some ideal continuous function.

• There's a limit to the frequencies we can represent

Image Frequency Content

Think: "how quickly pixels tend to change"

• Hard edges characterize high frequency content

Questions?

Image S

This image is too big to fit on the screen. How can we generate a half-sized version?

Image Subsampling

2nd pixel

4th pixel

1/4

8th pixel

1/8

Image Subsampling

Image Subsampling

1/2

1/4 1/8 Why does this look so crufty?

Subsampling: Another example

• Let's look back at our highest-frequency scanline:

Aliasing in 2D

Gaog

• Let's look back at our highest-frequency scanline:

• What's the "right" (i.e., best we can do) answer?

• Let's look back at our highest-frequency scanline:

- What's the "right" (i.e., best we can do) answer?
- If we walked far away, what we'd see is:

• Let's look back at our highest-frequency scanline:

- What's the "right" (i.e., best we can do) answer?
- If we walked far away, what we'd see is:

Aliasing in 2D

0	Ð	Ð	0	0	0	0	0	¢	¢.	¢	¢
0	ð	0	D	0	o	٥	0				
٥	٥	٥	٥	٥	٥	٥	٥	0	σ	o	0
¢	0	¢	¢	Þ	0	¢	¢				
0	¢	0	D	0	0	a	0	0	0	o	0
0	Ð	0	0	0	0	0	0				
0	0	o	0	0	0	0	o	o	¢	ò	¢
0	٥	٥	O	0	0	٥	٥				
Ð				0				o	o		0
								o	Ō		0
¢				¢							
								0	¢		0

Aliasing - the best we can do

Blurring removes high frequencies.

So: blur (pre-filter) the image, *then* subsample it.

Downsampling with Gaussian Pre-filtering

Downsampling with Gaussian Pre-filtering

with

without

1/2 1/4 1/8