CSCI 497P/597P: Computer Vision

Convolutional Neural Networks
Architectures
Application to other problems




Announcements

* Material starting today will not be on the
final.

* No class tomorrow (happy Thanksgiving!)

* Last week of class — special/fun topics:
— CNNis:

e advanced architectures

e other problems: object detection, style transfer
deep dream...

— (fast) bilateral filtering



Review: LeNet-5

[LeCun et al., 1998]

Image Maps V (/
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Convolutions
Subsampling

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]
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J v

Fully Connected

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
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Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3xa3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3xa3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3xa3 filters at stride 2

[4096] -C6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] ~C&: 1000 neurons (class scores)

e

5% 204 oag \dense
13

3 —-—
13 dense’| |dense]

1000

128 Max
128 Max pooling
pooling

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
@eavy data augmentation
dropout 0.5
batch size 128
GD Momentum 0.9
earning rate 1e-2, reduced by 10
manually when val accuracy plateaus

2 weight decay 5e-4
CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012, Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
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Case Study: AlexNet

[Krizhevsky et al. 2012]
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1000

192 128 Max
pooling

Full (simplified) AlexNet architecture:
[227x227x3] INPUT =
[55x55x96]|CONV1: 96 11x11 filters at stride 4, pad 0

I;;;;; 96] MAX POOL1: 3x3 filters at stride 2 [55x55x48] x 2
[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 Historical note: Trained on GTX 580
[13x13x256] MAX POOL2: 3x3 filters at stride 2 GPU with only 3 GB of memory.
[13x13x256] NORM2: Normalization layer Network spread across 2 GPUs, half
[13x13x384] CONV3: 384 3xa3 filters at stride 1, pad 1 the neurons (feature maps) on each
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 GPU.

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FCG: 4096 neurons

[4096] FC7: 4096 neurons

[1 000] FC&: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
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Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
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Case Study: VGGNet

. . | Softrnax || FC 4i |
[Simonyan and Zisserman, 2014] w e e
fe7 | FC 4096 | | 00 |

fc6 | FC 4006 | ]

Details: O | ]
: conv5-3 I ] [ ]

- ILSVRC’14 2nd in classificatjon) 1st in o e
localization — C—=— | 1

_ . . . . . conv4-3 | ] | |
g(l)r?lzlar training procedure as Krizhevsky ez | = |

tc7 conva-1 | ] | l

fc6 l Pool ] | 200! |

&No Local Response Normalisation (LRN) com-2 | 1o i
Use VGG16 or VGG19 (VGG19 only I ] | 1

convé4 I:l | Pool | | Po |

slightly better, more memory) = comzz | 11 ]

- Use ensembles for best results cond LSS0 St 1 conve-t | I 1

. | Pool 1 | 00l ]

- FC7 features generalize well to other conv2 DTN comi-2 | 1 ]
taSkS convi :I convi-1 [ ] | ]

= n
AlexNet VGG16 @

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
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Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
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Case Study: GoogleNet

[Szegedy et al., 2014]

Deeper networks, with computational

efficiency

- 22 layers

- Efficient “Inception” module

- No FC layers

- Only 5 million parameters!
12x less than AlexNet

- ILSVRC’14 classification winner
(6.7% top 5 error)

Inception module

,,,,,

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

“Inception module”: design a
good local network topology
(network within a network) and
then stack these modules on
top of each other

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

Previous Layer

Naive Inception module

Apply parallel filter operations on
the input from previous layer:

- Multiple receptive field sizes
for convolution (1x1, 3x3,
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs
together depth-wise

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case StUdy GOOQLeNet Q: What is the problem with this?

[Szegedy et al., 2014] [Hint: Computational complexity]
. Q3:What is output size after
Example: filter concatenation?
Conv Ops:
28x28x(128+192+96+256) = zsng [1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256

[5x5 conv, 96] 28x28x96x5x5x256
Total: 854M ops

3x3 pool .
Very expensive compute

Module input:
28x28x256

Pooling layer also preserves feature
depth, which means total depth after
concatenation can only grow at every
layer!

Naive Inception module

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Reminder: 1x1 convolutions

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

56

56

32

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Reminder: 1x1 convolutions

A

56

1x1 CONV
with 32 filters

preserves spatial
dimensions, reduces depth!

Projects depth to lower
dimension (combination of
feature maps)

56

m— 56

32

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

Q3:What is output size after
filter concatenation?

Example:

28x28x(128+192+96+256) = 529k

Filter

concatenation

28x28x96

28x28x256
e

Module ipput: Input
28x28@

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Solution: “bottleneck” layers that
use 1x1 convolutions to reduce
feature depth

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

Filter

concatenation

Previous Layer

Previous Layer

Naive Inception module

Inception module with dimension reduction

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]
1x1 conv “bottleneck”

layers

” Filter
Filter concatenation
concatenation

- 1x1
3x3 max convolution
Pooing * + *
W - - ——
convolution convolution
Previous Layer

Previous Layer

Naive Inception module

Inception module with dimension reduction

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

2828480\

Filter

concatenation

T
28x28x128 _ 28x28x192 28x28x96  28x28x64
— Z \ ~
1x1.conv, 3x3 epnv, 5x5_cqnv, 1x1 _conv,
©)
28x28x64  28x28x64

28x28x256
1

|
cQnv, 1an, 3x3 pool

MOdUIe j ut: Previous Layer
28x28

Inception module with dimension reduction

Using same parallel layers as
naive example, and adding “1x1
conv, 64 filter” bottlenecks:

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5x5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops

Compared to 854M ops for naive version
Bottleneck can also reduce depth after
pooling layer

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet 3

[Szegedy et al., 2014]

Stack Inception modules
with dimension reduction
on top of each other

il z" Fj
__B84 &
Nl N
B

\ '» :

T | =
=== =

T
Inception module TR

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

N\
oA %

Stem Network:
Conv-Pool-
2x Conv-Pool

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

- R

Stacked Inception
Modules

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

Diwi/é

Classifier output

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

R

Classifier output
(removed expensive FC layers!)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

u“ii
g

Auxiliary classification outputs to inject additional gradient at lower layers
(AvgPool-1x1Conv-FC-FC-Softmax)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

|
D'JL ‘L:

22 total layers with weights
(parallel layers count as 1 layer => 2 layers per Inception module. Don’t count auxiliary output layers)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- 22 layers

- Efficient “Inception” module

- No FC layers

- 12x less params than AlexNet

- ILSVRC’14 classification winner
(6.7% top 5 error)

Inception module

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
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Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet Q)ZX) - X

[He et al., 2015]

Very deep networks using residual F(x) + X T relu
connections
- 152-layer model for ImageNet . A X
- ILSVRC’15 classification winner ) ]’e'“ identity
(3.57% top 5 error) e
- Swept all classification and
detection competitions in X
ILSVRC’15 and COCO’15! Residual block

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?

lterations lterations

Training error
Test error

Q: What's strange about these training and test curves?
[Hint: look at the order of the curves]

56-layer model performs worse on both training and test error-> The deeper model

” R
performs worse, but it's not caused by overfitting! Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet

[He et al., 2015]
Hypothesis: the problem is an optimization problem, deeper models are harder to

optimize

The deeper model should be able to perform at
least as well as the shallower model.

A solution by construction is copying the learned

layers from the shallower model and setting
additional layers to identity mapping.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

I relu
H(x) F(x) + x
F(x X
relu () \relu identity
X X
“Plain” layers Residual block

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

H(x) = F(x) + x | relu
o < (x)=F(x) +x ~ F0)+ x
Use layers to
fit residual
X F(x) = H(x) - x
relu e ]relu Identity in(st)ead c()f)
T H(x) directly
X X
“Plain” layers Residual block

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

Stack residual blocks
Every residual block has
two 3x3 conv layers

X
Residual block

X
identity

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

Stack residual blocks
Every residual block has
two 3x3 conv layers
Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)

X
Residual block

3x3 conv, 128
filters, /2
spatially with
stride 2

X
identity

3x3 conv, 64
filters

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks

- Every residual block has
two 3x3 conv layers

- Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)

- Additional conv layer at
the beginning

I relu

F(x) + x

relu

X
Residual block

X
identity

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



—crra—
No FC layers
L Pool | besides FC

Case Study: ResNet

[He et al., 2015] oot
classes
Full ResNet architecture: I | Global
- Stack residual blocks Fox) + X rel g ayer
- Every residual block has after last
conv layer

two 3x3 conv layers B

- Periodically, double # of
filters and downsample F(x) relu X
spatially using/stride Identity
(/2 in each dimension)

- Additional conv layer at
the beginning X

- No FC layers at the end Residual block
(only FC 1000 to output _
classes)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet

[He et al., 2015]

Total depths of 34, 50, 101, or
152 layers for ImageNet .

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet

[He et al., 2015]

28x28x256
output
1x1 conv, 256 filters projects
back to 256 feature maps

For deeper networks (28x28x256)

(ResNet-50+), use “bottleneck” ! i
layer to improve efficiency 3x3 conv operates over

(similar to GoogLeNet) only 64 featrre maps I

1x1 conv, 64 filters
to project to

28x28x64 28X28x256

input

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Case Study: ResNet

[He et al., 2015]

Experimental Results

~ Able to train very deep MSRA @ ILSVRC & COCO 2015 Competitions
networks without degrading ) ! )
* 1st places in all five main tracks
(152 layers on ImageNet, 1202 - - "
Cifar) * ImageNet Classification: “Ultra-deep” (quote Yann) 152-layer nets
ek . * ImageNet Detection: 16% better than 2nd
- Dee_per ngt\.lvorks now achieve * ImageNet Localization: 27% better than 2nd
lowing training error as » COCO Detection: 11% better than 2nd
eXpeCted * COCO Segmentation: 12% better than 2nd
- Swept 1st place in all ILSVRC

and COCO 2015 competitions

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
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Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung






Comparing complexity...

Inception-v4: Resnet + Inception!

J Inception-v4

80 1 80 : ]
Inception-v3 | ResNet-152
ResNet-50 o -
751 75 ResNet-101 veeiie =
ResNet-34
X X
B s & ResNet-1
£ 70 5 70 6” esNet-18
3 ® GoogLeNet
5 Z ENet
S 65 g 65
- -
: 3 © BN-NIN
F 60 F 60 : 5M 35M - 65M---95M ----125M ---155M
BN-AlexNet
55 4 55 AlexNet
%0 S X A® 06 9 Q. ).l B g ) 5 10 15 20 25 30 40
e A\ 0 '\ '\ '& 5V A0> 45> (N2 N
p\e*‘\ *\~\ N Q)\ \~\ 3‘$e,’$e" ‘\0(\9‘\0(\ Operations [G-Ops]
e e e )
w ?~ <e~ v~ o€ ce“\ce

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Comparing complexity...

80 80
75 75
£ 70 £ 70
g 2
g g
g 65 1 § 65
: :
L] 60 ..... = 60
55 55
%0 RS > \] aq O %0
W et et XY A0 A9 b 0. Y st P 4
ﬁe*‘&\e*“@\“\ N A ‘\\e 0\,60 ‘9 e \;\e‘ 2oV o™
o 7 8% \0<hace®

GoogLeNet:
most efficient

Inception-v4
Inception-v3 . ResNet-152
Reslfet-50 VGG-16 VGG-19
ResNet-101
ResNet-34
ResNet-18
GooglLeNet
et
© BN-NIN
5M 35M - 65M-----95M - 125M ---155M
BN-AlexNet
AlexNet
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



. . ResNet:
Comparlng complexity... Moderate efficiency depending on

model, highest accuracy

Inception-v4
80 80 i ;
Inception-v3 | ResNet-152
ResNet-SO‘ d VGG-16 VGG-19
75 75 ResNet-101 ‘
ResNet-34 ]
_3570 3_‘.;70 ﬂ ResNet-18
g @ O’ GooglLeNet :
5 2 ENet :
S 65 © 65
- o ;
L 3 © BN-NIN i
" 60 " 60 5M 35M - 65M----95M - 125M ---155M
BN-AlexNet
55 55 AlexNet
20 eF e et Ak AB. A6 A0 b <O o> el 03 5 10 15 20 25 30 35 40
SV ST AW e et A0 A0 AT BT SV 40> AHF
Ple*% dx\% \~\’V\ ?’ig\«?’iv\e‘qé’q@og \*0‘5 \*e‘w\evxv\ e“» Operations [G-Ops]
oV i L TR RS

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



And so on and so forth...

* Dizzying number of papers since then
proposing more architecture tricks and hacks.
* A couple notable examples:

— FractalNet
— DenseNet



WE NEED TO GO
" DEEPER "

Do we though?
(open question)




And so on and so forth...

* So we've beat the crap out of ImageNet...
what now?

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30

28.2
25.8 1152 layers| | 152 layers| |152 layers|
25
A A A
20
16.4
15
11.7 |19 Iayers| |22 Iayers|

10
5 3.6 =
. 1 H B =

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al

Perronnin (AlexNet) Fergus  Zisserman (VGG) (GoogleNet) (ResNet) (SENet)



And so on and so forth...

* So we’ve beat the crap out of ImageNet... what
now?
— Can we do image classification on other datasets?
— Can we do things other than image classification?



And so on and so forth...

* So we’ve beat the crap out of ImageNet... what
now?
— Can we do image classification on other datasets?
— Can we do things other than image classification?



Transfer Learning

“You need a lot of a data if you want to
train/use CNNs”

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeun



Transfer Learning

“You need a lot of &If you want to
train f@ Ns”

$ Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition®, ICML 2014

Transfer Learning with CNNs i Sesame o ey YER Wotshoss

2014
1. Train on Imagenet

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
MaxPool

g

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition®, ICML 2014

Transfer Learning with CNNs e B o ey CVoR Wotabors

2014
1. Train on Imagenet 2. Small Dataset (C classes)

FC

o

FC4096 \ " Reinitialize

Fe-40% this and train

MaxPool
MaxPool
MaxPool > Freeze these
MaxPool

MaxPool
Conv-64
Conv-64

Conv-64
Conv-64

N

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Transfer Learning with CNNs

1. Train on Imagenet

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

Conv-64

g g g

C

FC-4096

MaxPool

MaxPool
Conv-512
Conv-512

MaxPool

MaxPool

MaxPool
Conv-64

-

_/

2. Small Dataset (C classes)

Reinitialize
this and train

> Freeze these

—

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition®, CVPR Workshops

2014

3. Bigger dataset

m

C
FC-4096
FC-4096

[}

<—— Train these

MaxPool

MaxPool

MaxPool

MaxPool

MaxPool
Conv-64
Conv-64

[

\

With bigger
dataset, train
more layers

> Freeze these

Lower learning rate
when finetuning;
1/10 of original LR
is good starting

j point

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
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Figure: Razavian et al.: CNN Features off-the-shelf: an Astounding Baseline for Recognition
https://arxiv.org/pdf/1403.6382.pdf




Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection

(Fast R-CNN) Image Captioning: CNN + RNN

L §
Propaosal ) - Hing b
dassier | softna et i “straw”

“hat” END

# 4 \% .
y 4 -4 'Rolpoomg

External proposa Zy ; ; 72
7

algorithm p /

e.g. selective search / '

Convhet
(applied to entire

START “straw” “hat”

Karpathy and Fei-Fei, “Deep Visual-Semantc Alignments for
Girshick, “Fast R-CNN”, ICCV 2015 Generating Image Descriptions”, CVPR 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection ,
(Fast R-CNN) — CNN pretrained
on ImageNet

Propasal + t .
ne : Bouncing tox
classifier ftma: £a §
regressors

Image Captioning: CNN + RNN

“straw” “hat” END

External proposa — /4
algorithm
e.g. selective search

Convhet
(applied to entire
image)

START llstraw” “hat"

Karpathy and Fei-Fei, "Deep Visual-Semantc Alignments for
Girshick, “Fast R-CNN”, ICCV 2015 Generating Image Descriptions”, CVPR 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung






And so on and so forth...

* So we’ve beat the crap out of ImageNet... what
now?
— Can we do image classification on other datasets?
— Can we do things other than image classification?



Other Computer Vision Tasks

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

GRASS, ) CAT DOG, DOG, CAT DbG, DOG, CAT
U TREE, SKY L U W
Y~ Y
No objects, just pixels Single Object Multiple Object This image ' CCO puble domain

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Other Computer Vision Tasks

Semantic
Segmentation

GRASS, ,
\ TREE, SKY

No objects, just pixels

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Semantic Segmentation

Label each pixel in the
image with a category
label

Don’t differentiate
instances, only care about
pixels

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Semantic Segmentation Idea: Sliding Window

Classify center
Extract patch — piyel with CNN
thAl

ﬂ ;: “JEI_,EJ M Cow

Full image

Farabet et al, "Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Extract patch pixel with CNN

Semantic Segmentation Idea: Sliding Window
Classify center

Full image

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Problem: Very inefficient! Not
reusing shared features between

overlapping patches



Semantic Segmentation ldea: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv argmax
—p —_— =
Y / Scores: Predictions:
CxHxW HxW
Convolutions:
DxHxW

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv Conv argmax
—_—

Input: J .
3x I?I xW Y Scores: Predictions:

CxHxW HxW

Sroblom: i . Convolutions:
roblem: convolutions a DxHxW

original image resolution will
be very expensive ...

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Semantic Segmentation Idea: Fully Convolutional

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
02 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

High-res: High-res: Predictions:
3xHXW D ,xH2xW/2 Dy x HIZ x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, "Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Semantic Segmentation ldea: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 277
convolution Med-res: Med-res:

D, x H/4 x W/4 D, x H/4 x W/4

Low-res:

: D, x H/4 x W/4
Input: High-res: High-res: Predictions:

3xHXW D ,xHI2xW/2 Dy x HIZ x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, "Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



In-Network upsampling: “Unpooling”

Nearest Neighbor “Bed of Nails”

1 1|12 2 1. 0|2 o0
12 1 112 2 1T 2 |0 0j0 0
3 4 - 3 3|4 4 3 4 3 0|4 0
3 3|4 4 0 0|0 0O
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



In-Network upsampling: “"Max Unpooling”

Max Pooling
Remember which element was max!

1 2|16 3
3 5|2 1 5 6
1 212 1 7 8
7 3|4 8
Input: 4 x 4 Output: 2 x 2

Corresponding pairs of
downsampling and
upsampling layers

Rest of the network

Max Unpooling
Use positions from

pooling layer 0O 0 2 0
1T 2 01 0 0
3 4 0O 0 0 O
3 0 0 4
Input: 2 x 2 Output: 4 x 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall:Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4 Output: 2 x 2

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

> Filter moves 2 pixels in

Dot product the input for every one

between filter pixel in the output

and input
Stride gives ratio between
movement in input and
output

Input: 4 x 4 Output: 2 x 2

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Sum where
output overlaps

Input gives
weight for
filter

Input: 2 x 2

Filter moves 2 pixels in
the output for every one

pixel in the input

Stride gives ratio between
movement in output and
input

Output: 4 x 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Sum where
output overlaps

Input gives
weight for
filter

Input: 2 x 2

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input

Output: 4 x 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: Transpose Convolution

. . Sum where
Other names: 3 x 3 transpose convolution, stride 2 pad 1 output overlaps
-Deconvolution (bad)
-Upconvolution
-Fractionally strided
convolution
Backward strided > Filter moves 2 pixels in
convolution Input gives the output for every one
weight for pixel in the input
filter
Stride gives ratio between
movement in output and
input
Input: 2 x 2 Output: 4 x 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Learnable Upsampling: 1D Example

Output

In pUt Filter Output contains
axXx copies of the filter
weighted by the
/ ay input, summing at
3 where at overlaps in
the output
2 k =

|

N < X

Need to crop one
b pixel from output to
y make output exactly

/ 2x input
\ bz

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung







2D Obiject Detection

2D Object
Detection

;E'- y 2 =
DOG, DOG, CAT

Object categories +
2D bounding boxes

This image is CCO public domain

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? NO
Background? YES

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO
Background? NO

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO
Background? NO

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Object Detection as Classification: Sliding Window

| | -

IR

te‘*'.;". 2

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

Problem: Need to apply CNN to huge
number of locations, scales, and aspect
ratios, very computationally expensive!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Region Proposals / Selective Search

e Find “blobby” image regions that are likely to contain objects
e Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

Alexe et al, "Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition®, IJCV 2013

Cheng el al, "BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Lecating cbject proposals from edges”, ECCV 2014

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



R-CNN

Bbox reg || SVMs

Bbox reg || SVMs
Bbox reg SVMs ‘
ConvN
et
ConvN

ConvN
et

Input image

Linear Regression for bounding box offsets

Classify regions with
SVMs

Forward each
region through
ConvNet

,b Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014,
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Fast R-CNN

Softmax
classifier

Regions of %&ﬁ/”convs” feature map of image

Interest (Rols)
from a proposal
method

Linear +

softmax Linear

*t N

Bounding-box
regressors

Fully-connected layers

L /7 /7 “RolPooling” layer

Forward whole image through ConvNet

Input image

Girshick, “Fast R-CNN", ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Faster R-CNN:

Make CNN do proposals!

Insert Region Proposal | ‘ | '
Network (RPN) to predict Rol pooling
proposals from features f

proposals/ /
Jointly train with 4 losses:

1. RPN classify object / not object Region Proposal Network " ‘

2. RPN regress box coordinates W

3. Final classification score (object st g -
classes)

4. Final box coordinates

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 Vo T —
Figure copyright 2015, Ross Girshick; reproduced with permission

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Mask R-CNN

Classification Scores: C
Box coordinates (per class): 4 * C

/]

/’/ // //

g B ve
1| A 4 4

A | A 1|

//// // —_— // —

A 489% “B%
A /] “

M) , .|/ Conv | 1]/ Conv
|2/ Rol Align / /
//

256 x14x14 256x14x14 Predict a mask for

each of C classes

Cx14x14

He et al, "Mask R-CNN", arXiv 2017

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Mask R-CNN: Very Good Results!

He et al, "Mask R-CNN", arXiv 2017
Figures copyright Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick, 2017.
Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Detection without Proposals: YOLO / SSD

Go from input image to tensor of scores with one big convolutional network!

>

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

i

Input image Divide image into grid Output:
3XxXHxW 7x7 7x7x(5*B+C)

Image a set of base boxes

Redmon et al, “You Only Look Once: centered at each grld cell
Unified, Real-Time Object Detection”, CVPR 2016 Here B —_ 3
Liu et al, "SSD: Single-Shot MultiBox Detector”, ECCV 2016 -

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Object Detection: Impact of Deep Learning

mean Average Precision (mAP)

80%

70%

60%

50%

40%

30%

20%

10%

0%

Figure copyright Ross Girshick, 2015.

Reproduced with permission.

2006

PASCALVOC

Before deep convnets

\

2007 2008 2009 2010 2011 2012
year

A

}
Y

Using deep convnets

2013 2014 2015 2016

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Other Problems

Fine-grained recognition (e.g., dog/bird species)
Instance segmentation

Face detection and recognition

Motion estimation

Feature detection and description

Depth estimation

Novel view synthesis

...and many others



