CSCI 497P/597P: Computer Vision

Convolutional Neural Networks
and some of the practicalities that make them work
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Goals (Today)

* Know the idea and purpose of each of the following tricks used
when training CNNs:

¢ Batched training

1/ Preprocessing / data augmentation
— Momentum

— Learning rate decay

— Dropout

— Weight initialization and batch normalization



Announcements

 HWS5 out; due Monday 11/30. Lowest HW
grade is dropped.



Convolutional Neural Networks

Neural Network
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Input data

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]
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The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

 What happened?
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How do you get this to work?

* Basic version:
— Download the 1281167 images in ImageNet

— Feed an image into network, compute gradient of
loss wrt parameters, update parameters.

— Repeat a few times (1.5 billion should do it)



There’s a bit more to it.

* Most of these things are practical heuristics
that have been empirically discovered to work
well:

— Batched training
— Preprocessing / data augmentation






There’s a bit more to it.

* Most of these things are practical heuristics
that have been empirically discovered to work
well:

— Batched training
— Preprocessing / data augmentation
— Momentum



Mini-batch SGD

Loop:
—=>1. Sample a batch of data

~2. Forward prop-itthrough the graph
et lo
3. Backprop to calculate the gradients

4. Update the parameters using the gra@

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeun



Updating Parameters

- learning rate * dx

v =® * v - learning rate * dx

X += v

Momentum combines the gradient update with a direction based on the average
of recent update direction.

Update on v is usually something like:

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Updating Parameters

# Vanil Momentum update

momentum
# Moment Step
v = mu * actual step velocity
X += v
>
Momentum gradlent 1 the average
of recent upc step

Update on v is usually something like:
v=(1l-Db) v + Db * dx

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung






There’s a bit more to it.

* Most of these things are practical heuristics
that have been empirically discovered to work
well:

— Batched training

— Preprocessing / data augmentation
— Momentum

— Learning rate decay



Learning Rate Decay (Annealing)

* Reduce learning rate as training continues.
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Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization



Weight Initialization

- Q: what happens when W=constant init is used?

output layer
input layer
hidden layer

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Weight Initialization

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Weight Initialization

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Works ~okay for small networks, but problems with
deeper networks.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Lets look at
some
activation
statistics

E.g. \Q het with
neurons on each
layer, using
non-linearities, and
initializing as
described in last slide.

# assume some unit gaussian 10-D input data

D = np.random.randn(1060, 500)

hidden layer sizes = [500]*10

nonlinearities = ['tanh']*len(hidden_layer sizes)

act = {'relu’:lambda x:np.maximum(©,x), 'tanh’':lambda x:np.tanh(x)}
Hs = {}
for i in xrange(len(hidden layer sizes)):

X =D if i == 0 else Hs[i-1] # input at this layer

fan_in = X.shape[1]

fan _out = hidden layer sizes[i]

W = np.random.randn(fan in, fan out) * ©.01 # layer initialization

np.dot(X, W) # matrix multiply
act[nonlinearities[i]](H) # nonlinearity

H
H
Hs[i] = H # cache result on this layer

# look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean(H) for i,H in Hs.iteritems()]
layer stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems():
print 'hidden layer %d had mean %f and std %f' % (i+1, layer_means[i], layer_stds[i])

# plot the means and standard deviations
plt.figure()

plt.subplot(121)

plt.plot(Hs.keys(), layer means, 'ob-')
plt.title('layer mean')

plt.subplot(122)

plt.plot(Hs.keys(), layer_stds, 'or-')
plt.title('layer std')

# plot the raw distributions

plt.figure()

for i,H in Hs.iteritems():
plt.subplot(1l,len(Hs),i+1)
plt.hist(H.ravel(), 30, range=(-1,1))

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung




input layer had mean 0.000927 and std ©.998388

hidden layer 1 had mean -6.600117 and std ©0.213081
hidden layer 2 had mean -©.800001 and std ©.647551
hidden layer 3 had mean -0.000002 and std ©.010630
hidden layer 4 had mean 0.000001 and std 0.002378
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -0.000000 and std ©.000119
hidden layer 7 had mean 0.000000 and std 0.000026
hidden layer 8 had mean -©.000000 and std ©.000006
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std 0.000000
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input layer had mean 0.000927 and std ©.998388

hidden layer 1 had mean -6.600117 and std ©0.213081
hidden layer 2 had mean -©.800001 and std ©.647551
hidden layer 3 had mean -0.000002 and std ©.010630 H H |
hidden layer 4 had mean 0.000001 and std 0.002378 Actlvatlons become Zero:
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -0.000000 and std ©.000119
hidden layer 7 had mean 0.000000 and std 0.000026 . .
hidden layer 8 had mean -©.000000 and std ©.600006 What do the gradlents look like?
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std 0.000000
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W =

Weight Initializatio

np.random.randn(fan in, fan out) / np.sqrt(2/%
# fan in = nume

input layer had mean 0.000501 and std 0.999444
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Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015
All you need is a good init, Mishkin and Matas, 2015
Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung






Question for you

* The input to a network is @channel RGB
image. The first layer of the network is a
convolution layer. This layer learns 8 filters,
each of which i@ How many parameters
(weights) need to be learned for this layer?
—A:9
—B:72

— D: Depends on the input image dimensions

@{22 peights - €
2
- ?



Convolution Layer

activation map

_— 32x32x3 image

| ayh
P 5x5x3\filter /

28
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Question for you

* The input to a network is a 3-channel RGB

image. The first layer of the network is
convolution layer. This Iayer@ns 8 fil{e%

each of which is 3x3. What is The channel
dimension of the output feature map?

—A:1
—B:3
—-C: 8
—D: 24




Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization and batch normalization



Batch Normalization [loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

(k) _ E[z(F)
O [z**]

v/ Var[z(¥)] this is a vanilla
differentiable function...

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Batch Normalization

[loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

N X

A A

vy

1. compute the empirical mean and
variance independently for each

imension.

2. Normalize
) _ z(k) — E[z(®)]
v/ Var[z (k)]

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Batch Normalization [loffe and Szegedy, 2015]

|

FC Usually inserted after Fully

- __ Connected or Convolutional layers,
1 and before nonlinearity.

tanh
l

FC
]

BN o) z*) — E[m(k)]
1 k

- \/ Var[z ()]

Problem: do we necessarily want a zero-
mean unit-variance input?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Batch Normalization [loffe and Szegedy, 2015]

Normalize: Details in the batchorm paper:

X . https://arxiv.org/pdf/1502.03167.pdf
2(k) _ E[x(’”)]

k
\/Var[m ( )] Note, the network can learn:

And then allow the network to squash »y(k) — \/Var[:zz(k)]
the range if it wants to:

(k)

Bk = E[:z:(’“)]
yk) = ~(R)Z(k) 4 g(k)

to recover the identity
mapping.

At test time, the answer shouldn’t depend on the
batch:

Instead, use a global average (computed during
training) of activation means and variances

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Batch Normalization

BatchNorm2d

CLASS torxch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0. 1, -
affine=True Eack_running_stats:TIueﬂ [SOURCE]

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel
dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift .

TL;DR: Using batch normalization speeds up training and
makes it less sensitive to weight initialization.



Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization and batch normalization

— Ensembling






Model Ense\mbles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Why would this work?

* Using different random initializations results in training arriving at
different local minima.

 Remarkable (empirical) fact: performance of each one is similar!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!
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Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

Cifar10 (L=100,k=24, B=300 epochs)
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Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission. make thIS Work even better'
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Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization and batch normalization
— Ensembling
— Dropout



Regularization: Reminder

* Penalizes large weights to prevent the model
from fitting training data too closely (overfitting)

— Helps network generalize to unseen data

* L2 regularization forces parameters to be used
“equally”
— parameters with similar magnitudes will have a lower

regularization cost than mostly zero with a few huge
values.

* Another way to force the network to use all its
parameters equally: randomly drop parameters
each training iteration!



Another way to force the network to use all its parameters
equally: randomly drop parameters each training iteration!

Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



pass with a
3-layer network
using dropout

Regularization: Dropout Example forward

p=20.5

def train_step(X):
" X contains the data """

H1 np.maximum(©, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p

H1 *= Ul

H2 = np.maximum(©, np.dot(W2, H1l) + b2)
U2 = np.random.rand(*H2.shape) < p #

H2 *= U2

out = np.dot(W3, H2) + b3

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail ﬁ(—x\‘

is furry —X——_ cat
~___—— score

has claws +/
mischievous

look

T

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 107233 possible masks!
Only ~ 108 atoms in the universe...

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Dropout: Test time

def predict(X):

H1 = np.maximum(®, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©®, np.dot(W2, H1l) + b2) * p
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



""" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

“"" X contains the data """

# forward pass for example 3-layer neural network
H1 = np.maximum(©, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p # 7irst dropout mask
H1 *= Ul # drop! .
7= maXTRGR( Y, 0ot WZ, A1 ¥ 52) drop in forward pass
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3

3+

backward pass: compute gradients... (not shown)

# perform parameter update... (not shown)

def predict(X):

# ensembled forward pass

H1 = np.maximum(©, np.dot(Wl, X) + bl)|* p # NOTE: scale the activations i
H2 = np.maximum(©, np.dot(W2, H1) + b2) * p # NOTE: scale the activations Scale at teSt tlme
out = np.dot(W3, H2) + b3

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



More common: “Inverted dropout”

p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
# forward pass for example 3-layer neural network
H1 = np.maximum(©®, np.dot(Wl, X) + bl)
Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
Hl *= Ul # drop!
H2 = np.maximum(©, np.dot(W2, H1) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3
# backward pass: compute gradients... (not shown)
# perform parameter update... (not shown)

test time is unchanged!
def predict(X): /
# ensembled forward pass

H1 = np.maximum(®, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, H1l) + b2)
out = np.dot(W3, H2) + b3

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization and batch normalization
— Ensembling
— Dropout






Next Up: CNN Architecture Tour

 What happened since AlexNet?
* There’s a general theme:

WE NEED TO GO
"~ DEEPER




