
Convolutional Neural Networks 
and some of the practicalities that make them work

CSCI 497P/597P: Computer Vision
 



Readings

• https://cs231n.github.io/neural-networks-2/
• https://cs231n.github.io/neural-networks-3/
• https://cs231n.github.io/convolutional-

networks/

with a great deal more detail…



Goals (Today)
• Know the idea and purpose of each of the following tricks used 

when training CNNs:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Dropout
– Weight initialization and batch normalization



Announcements

• HW5 out; due Monday 11/30. Lowest HW 
grade is dropped.



Convolutional Neural Networks
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Nonlinearitites!
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Convolutions



The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]
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The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

• What happened?



How do you get this to work?

• Basic version: 
– Download the 1281167 images in ImageNet
– Feed an image into network, compute gradient of 

loss wrt parameters, update parameters.
– Repeat a few times (1.5 billion should do it)



There’s a bit more to it.

• Most of these things are practical heuristics 
that have been empirically discovered to work 
well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Dropout
– Weight initialization and batch normalization
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Updating Parameters
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Momentum combines the gradient update with a direction based on the average 
of recent update direction.

Update on v is usually something like:
v = (1 – b) v  +  b * dx
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There’s a bit more to it.

• Most of these things are practical heuristics 
that have been empirically discovered to work 
well:
– Batched training
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Learning Rate Decay (Annealing)

• Reduce learning rate as training continues.
– Step decay:

– Exponential decay 
– 1/t decay





Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout



Weight Initialization
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Activations become zero!

What do the gradients look like?



Weight Initialization
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W = np.random.randn(fan_in, fan_out) / np.sqrt(2/fan_in)
# fan_in = numel(input)
# fan_out = numel(output)
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Question for you

• The input to a network is a 3-channel RGB 
image. The first layer of the network is a 
convolution layer. This layer learns 8 filters, 
each of which is 3x3. How many parameters 
(weights) need to be learned for this layer?
– A: 9
– B: 72
– C: 216
– D: Depends on the input image dimensions





Question for you

• The input to a network is a 3-channel RGB 
image. The first layer of the network is a 
convolution layer. This layer learns 8 filters, 
each of which is 3x3. What is the channel 
dimension of the output feature map?
– A: 1
– B: 3
– C: 8
– D: 24



Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout
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Problem: do we necessarily want a zero-
mean unit-variance input?



Details in the batchorm paper:
https://arxiv.org/pdf/1502.03167.pdf
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• At test time, the answer shouldn’t depend on the 
batch:
• Instead, use a global average (computed during 

training) of activation means and variances



Batch Normalization

TL;DR: Using batch normalization speeds up training and 
makes it less sensitive to weight initialization.
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Why would this work? 
• Using different random initializations results in training arriving at 

different local minima.
• Remarkable (empirical) fact: performance of each one is similar! 
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Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout



Regularization: Reminder
• Penalizes large weights to prevent the model 

from fitting training data too closely (overfitting)
– Helps network generalize to unseen data

• L2 regularization forces parameters to be used 
“equally”
– parameters with similar magnitudes will have a lower 

regularization cost than mostly zero with a few huge 
values.

• Another way to force the network to use all its 
parameters equally: randomly drop parameters 
each training iteration!
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Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout





Next Up: CNN Architecture Tour

• What happened since AlexNet?
• There’s a general theme:


