
Regularization
CNNs: Interpretation, Practicalities

CSCI 497P/597P: Computer Vision



Readings

• https://cs231n.github.io/neural-networks-2/
• https://cs231n.github.io/neural-networks-3/
• https://cs231n.github.io/convolutional-

networks/

with a great deal more detail…

http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/


Goals (Last Lecture)

• Understand why we need activation functions.
• Understand the motivation and behavior of 

convolutional layers in neural networks.
• Understand the degrees of freedom available 

in setting up a convolution layer:
– Output channels, kernel size, padding, stride

• Know the meaning of the various basic layers 
involved in standard CNN architectures
– Conv, ReLU, Pool, Fully Connected



Goals (Today)

• Understand the purpose of applying regularization in machine 
learning training.

• Know what overfitting means and why it’s bad.
• Gain intuition for the meaning of intermediate layers in CNNs.
• Know the idea and purpose of each of the following tricks used 

when training CNNs:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Dropout
– Weight initialization and batch normalization



Announcements

• HW5 still doesn’t exist. It will be short, 
optional, or both, with the goal of helping 
you prepare for the final.

• P2 grading is in progress.



Announcements

• P4 is out. You will:
– Modify a trained 1000-class 

classifier to turn it into a 2-class 
“dog vs food” classifier.

– Misuse backpropagation to:
• see which input pixels are most 

influential in classifying it
• trick the classifier into predicting the 

wrong class
• synthesize images that maximize a 

chosen class score
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Announcements

– Misuse backpropagation to:
• see which input pixels are most influential (saliency)
• trick the classifier into predicting the wrong class
• synthesize images that maximize a chosen class score



Announcements

– Misuse backpropagation to:
• see which input pixels are most influential in classifying it
• trick the classifier into predicting the wrong class
• synthesize images that maximize a chosen class score

dog snail difference



Announcements

– Misuse backpropagation to:
• see which input pixels are most influential in classifying it
• trick the classifier into predicting the wrong class
• synthesize images that maximize a chosen class score



Machine Learning Aside: 
Regularization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

• Suppose we’ve learned a linear classifier W such 
that L = 0: it classifies everything perfectly.

• Is this W unique?



Regularization

No! 2W is also has L = 0!
Which do we prefer – W, or 2W? 
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such that L = 0: it classifies everything 
perfectly.

• Is this W unique?
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overfitting: learning the training data too well,
to the detriment of performance on unseen data



A more interesting example of non-
uniqueness…



Regularization
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Regularization
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Regularization in CNNs

• AKA “weight decay”



Convolutional Neural Networks

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Nonlinearitites!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Convolutions





CNNs before they were cool: LeNet-5
[LeCun et al., 1998]

• Today’s architectures still look a lot like this!



The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

11x11 5x5 3x3 3x3 3x3



The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

• What happened?



• What changed?
– Bigger training data: ImageNet has 14 million images and 

20,000 categories.
• (performance numbers are on a 1000-category subset) 

– GPU implementation of ConvNets
• Train bigger, deeper networks for longer than before

– ReLU
• Not new in AlexNet, but a necessary design choice to avoid 

vanishing gradients in deep network

• Hence “deep learning”: 
– a rebranding of formerly unfashionable neural networks

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]



What do all these feature maps mean?

The filters:

Some image 
patches that have 
high activations on 
those filters:

Visualizations from
[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]



What do all these feature maps mean?
The filters, “deconvolved” back 
into pixel space (see the paper):

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]

Some image patches that have high 
activations on those filters:
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The filters, “deconvolved” back 
into pixel space (see the paper):
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Some image patches that have high 
activations on those filters:



What do all these feature maps mean?

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]



What do all these feature maps mean?

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]



Another View: Visualizing AlexNet in 2D with t-SNE

[Donahue, “DeCAF: DeCAF: A Deep Convolutional …”, arXiv 2013](2D visualization using t-SNE)

Linear  
Classifier



How do you get this to work?

• Basic version: 
– Download the 1281167 images in ImageNet
– Feed an image into network, compute gradient of 

loss wrt parameters, update parameters.
– Repeat a few times (1.5 billion should do it)



There’s a bit more to it.

• Most of these things are practical heuristics 
that have been empirically discovered to work 
well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Dropout
– Weight initialization and batch normalization



How do you get this to work?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Batched Training
• Stochastic gradient descent, technically:

– Sample a single random datapoint
– Compute the loss
– Update the parameters

• What people actually mean when they say SGD: Minibatch 
Gradient Descent
– Shuffle your dataset
– Iterate over batches of (batch_size) images:

• Feed the whole batch through the network
• Compute loss and update parameters

• What size batches?
– Whatever your GPU can push through the model at once. 16, 

32, 64, 256, …





There’s a bit more to it.

• Most of these things are practical heuristics 
that have been empirically discovered to work 
well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Dropout
– Weight initialization and batch normalization



Networks learn better on zero-
centered data.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Preprocessing

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

In practice: Average all images in the dataset and subtract that 
from each input.
Dividing by stdev isn’t usually done.



Data Augmentation

• When >1 million training images is not 
enough:
– Randomly Flip, Scale, Crop, Rotate, Perturb 

brightness and color
– Example:

import torchvision.transforms as tvt
transforms = tvt.Compose([

tvt.Resize((224,224)),
tvt.ColorJitter(hue=.05, saturation=.05),
tvt.RandomHorizontalFlip(),
tvt.RandomRotation(20, resample=PIL.Image.BILINEAR)

])



Data Augmentation





There’s a bit more to it.

• Most of these things are practical heuristics 
that have been empirically discovered to work 
well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Dropout
– Weight initialization and batch normalization
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Updating Parameters

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Momentum combines the gradient update with a direction based on the average 
of recent update direction.

Update on v is usually something like:
v = (1 – b) v  +  b * dx



Updating Parameters
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Momentum combines the gradient update with a direction based on the average 
of recent update direction.

Update on v is usually something like:
v = (1 – b) v  +  b * dx



30 Second Red Panda Break



There’s a bit more to it.

• Most of these things are practical heuristics 
that have been empirically discovered to work 
well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Dropout



Learning Rate Decay (Annealing)

• Reduce learning rate as training continues.
– Step decay:

– Exponential decay 
– 1/t decay



Question for you

• 2 questions on Socrative: How do convolution 
layers work?

• Breakout groups of 3
– socrative.com
– room name: CSCI497P







Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout



Weight Initialization
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Weight Initialization
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Weight Initialization
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Activations become zero!

What do the gradients look like?



Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

W = np.random.randn(fan_in, fan_out) / np.sqrt(2/fan_in)
# fan_in = numel(input)
# fan_out = numel(output)



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung





Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout
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Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Problem: do we necessarily want a zero-
mean unit-variance input?



Details in the batchorm paper:
https://arxiv.org/pdf/1502.03167.pdf

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

• At test time, the answer shouldn’t depend on the 
batch:
• Instead, use a global average (computed during 

training) of activation means and variances

https://arxiv.org/pdf/1502.03167.pdf


Batch Normalization

TL;DR: Using batch normalization speeds up training and 
makes it less sensitive to weight initialization.



Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout





Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Why would this work? 
• Using different random initializations results in training arriving at 

different local minima.
• Remarkable (empirical) fact: performance of each one is similar! 
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Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout



Regularization: Reminder

• Penalizes large weights to prevent the model 
from fitting training data too closely (overfitting)
– Helps network generalize to unseen data

• L2 regularization forces parameters to be used 
“equally”
– parameters with similar magnitudes will have a lower 

regularization cost than mostly zero with a few huge 
values.

• Another way to force the network to use all its 
parameters equally: randomly drop parameters 
each training iteration!
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Another way to force the network to use all its parameters 
equally: randomly drop parameters each training iteration!
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Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout





Next Up: CNN Architecture Tour

• What happened since AlexNet?
• There’s a general theme:


