CSCI 497P/597P: Computer Vision

Regularization
CNNs: Interpretation, Practicalities

sit+5xs W (sit+exe Wl (S)T+en
n
(st+5xs W r+exe Wl (S)T+1xT

r+exe [l S+
A

(Sit+exg [l (SIT+TxT
» n
(Sit+ex [l (S)T+TxT
B n
(Sit+xg [l (SIT+TxT
L n
(sh+sxs Wl (S)Teexe

Readings

with a great deal more detail...

nttps://cs231n.git

U

0.io/neura

-networks-2/

nttps://cs231n.git

U

n.io/neura

-networks-3/

nttps://cs231n.git

U

n.io/convo

utional-

networks/

http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/

Goals (Last Lecture)

Understand why we need activation functions.

Understand the motivation and behavior of
convolutional layers in neural networks.

Understand the degrees of freedom available
in setting up a convolution layer:

— Output channels, kernel size, padding, stride

Know the meaning of the various basic layers
involved in standard CNN architectures

— Cony, RelLU, Pool, Fully Connected

Goals (Today)

Understand the purpose of applying regularization in machine
learning training.

Know what overfitting means and why it’s bad.

Gain intuition for the meaning of intermediate layers in CNNs.

Know the idea and purpose of each of the following tricks used
when training CNNs:

— Batched training

— Preprocessing / data augmentation

— Momentum

— Learning rate decay

— Dropout

— Weight initialization and batch normalization

Announcements

« HWS5 still doesn’t exist. It will be short,
optional, or both, with the goal of helping

you prepare for the final.
P2 grading is in progress.

Announcements

e P4 is out. You will:

— Modify a trained 1000-class
classifier to turn it into a 2-class
“dog vs food” classifier.

— Misuse backpropagation to:

* see which input pixels are most
influential in classifying it

* trick the classifier into predicting the
wrong class

* synthesize images that maximize a
chosen class score

Announcements

e P4 is out. You will:

— Modify a trained 1000-class
classifier to turn it into a 2-class
“dog vs food” classifier.

— Misuse backpropagation to:

* see which input pixels are most
influential in classifying it

* trick the classifier into predicting the
wrong class

* synthesize images that maximize a
chosen class score

Announcements

— Misuse backpropagation to:

e see which input pixels are most influential (saliency)
* trick the classifier into predicting the wrong class

* synthesize images that maximize a chosen class score

Announcements

— Misuse backpropagation to:
* see which input pixels are most influential in classifying it
* trick the classifier into predicting the wrong class
* synthesize images that maximize a chosen class score

dog snail difference

Announcements

— Misuse backpropagation to:

* see which input pixels are most influential in classifying it
* trick the classifier into predicting the wrong class

* synthesize images that maximize a chosen class score

strawberry ne mushroom

Machine Learning Aside:
Regularization

e Suppose we’ve learned a linear classifier W such
that L = O: it classifies everything perfectly.

* |s this W unique?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization

e Suppose we’ve learned a linear classifier W
such that L = 0: it classifies everything
perfectly.

* |s this W unique?

No! 2W is also has L = 0!
Which do we prefer — W, or 2W?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization: Prefer Simpler Models

O
O
© @

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization: Prefer Simpler Models

f, £

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization: Prefer Simpler Models

f, £

Regularization pushes against fitting the data
too well so we don't fit noise in the data

overfitting: learning the training data too well,
to the detriment of performance on unseen data

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

A more interesting example of non-
uniqueness...

Regularization

.
_NZ .’,Uz, z)
sl Y,

N

%

Data loss: Model predictions
should match training data

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization

L(W) = ZL (25, W), y;) + AR(W)

\ J WJ
Y
Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization)\ = regularization strength
(hyperparameter)

Z L flz;, W yz) + AR(W)

\ J R/_/
Y
Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples

L2 regularization: R(W) = >, >, W},

L1 regularization: R(W) =Y., Y, [Wi,|

Elastic net (L1 + L2): R(W) = 37, 37, BW,, + [Wiy|

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization in CNNs

* AKA “weight decay”

Convolutional Neural Networks

Neural Network

L W))

Convolutions Nonlinearitites!

Convolution Layer

-

I

o

V
——0

32

consider a second, green filter

32x32x3 Image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

y

/A

28

CNNs before they were cool: LeNet-5
[LeCun et al., 1998]

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5

INPUT
30x32 6@28x28

I
’ Full conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

* Today’s architectures still look a lot like this!

The CNN that made them cool: AlexNet

Input data

227x 227 X 3
11x11

27% 27 X 256
55X 55 X 96

[Krizhevsky et al. 2012]

Convl

Conv2

5x5

3x3

Conv3 Conv4

(=09 -

13X 13 X384 13x 13 x 384

3x3 3x3

Convs

FC6 FC7

FC8

13x 13 X 256

4096 4096

1000

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

 What happened?

28.2
25.8
16.4
11.7
e 6.7
5.1
H K Fl
: B

ILSVRC ILSVR(ILSVRC |LSVRC ILSVRC ILSVRC Human ILSVRC
2010 2011| 2012 |2013 2014 2014 Performance 2015
NEC Xerox| AlexNet |Clarifi VGG GoogleNet ResNet
America

w
o
J

N
($3)
l

N
o
]

—
o
|

(&3
1

ImageNet classification top-5 error (%)
b
(6]
|

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

* What changed?

— Bigger training data: ImageNet has 14 million images and
20,000 categories.

* (performance numbers are on a 1000-category subset)

— GPU implementation of ConvNets

* Train bigger, deeper networks for longer than before

— RelU

* Not new in AlexNet, but a necessary design choice to avoid
vanishing gradients in deep network

 Hence “deep learning”:

— a rebranding of formerly unfashionable neural networks

What do all these feature maps mean?

The filters:

Some image
patches that have

high activations on
those filters:

Visualizations from
[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]

What do all these feature maps mean?

The filters, “deconvolved” back Some image patches that have high
into pixel space (see the paper): activations on those filters:
>3 /,WW =_ NS
”m' B" \\, ! ’
“M =~ =
B2 Y Y1228

th]Iﬂ’w
e YYY

T Ss !
- ;’.":x /

o SR AN

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]

What do all these feature maps mean?

The filters, “deconvolved” back Some image patches that have high
into pixel space (see the paper): activations on those filters:

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]

What do all these feature maps mean?

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]

Another View: Visualizing AlexNet in 2D with t-SNE

N\ | EN S\’ " "
I Y. 3 3
e N 2 ’ I
3 ' || ||
. 192 192 128 2048 Joas \dense
oy 128 — —
\ 13 \ 13
3 ANt
---------- 3/ 3“ 2 3 e e R "
Y B 13] dense | [dense
27 EN 3|\ = 13
3 RES =
192 192 128 Max L]
Max 128 Max pooling 2048 2048
pooling pooling

e structure, construction
covering

* commodity, trade good, good

° conveyance, transport

* invertebrate

e bird

e hunting dog

(c) DeCAF; (d) DeCAFg

(2D visualization using t-SNE) [Donahue, “DeCAF: DeCAF: A Deep Convolutional ...”, arXiv 2013]

How do you get this to work?

* Basic version:
— Download the 1281167 images in ImageNet

— Feed an image into network, compute gradient of
loss wrt parameters, update parameters.

— Repeat a few times (1.5 billion should do it)

There’s a bit more to it.

* Most of these things are practical heuristics
that have been empirically discovered to work
well:

— Batched training

How do you get this to work?

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph
(network), get loss

3. Backprop to calculate the gradients

4. Update the parameters using the gradient

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Batched Training

Stochastic gradient descent, technically:

— Sample a single random datapoint

— Compute the loss

— Update the parameters
What people actually mean when they say SGD: Minibatch
Gradient Descent

— Shuffle your dataset

— lterate over batches of (batch_size) images:
* Feed the whole batch through the network
* Compute loss and update parameters

What size batches?

— Whatever your GPU can push through the model at once. 16,
32, 64, 256, ...

There’s a bit more to it.

* Most of these things are practical heuristics
that have been empirically discovered to work
well:

— Batched training
— Preprocessing / data augmentation

Networks learn better on zero-
centered data.

Before normalization: classification loss After normalization: less sensitive to small
very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize
®
® o \A A
A
° A @ A
A
®
o o\A A
A
® A

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Preprocessing

Step 1: Preprocess the data

original data zero-centered data normalized data

-10 -10
19 10 5 0 S 19 10

X -= np.mean(X, axis = 0) . X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

In practice: Average all images in the dataset and subtract that
from each input.

Dividing by stdev isn’t usually done.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Data Augmentation

* When >1 million training images is not
enough:

— Randomly Flip, Scale, Crop, Rotate, Perturb
brightness and color

— Example:

import torchvision.transforms as tvt
transforms = tvt.Compose(]|
tvt.Resize((224,224)),
tvt.ColorJitter (hue=.05, saturation=.05),
tvt.RandomHorizontalFlip(),
tvt.RandomRotation (20, resample=PIL.Image.BILINEAR)

Data Augmentation

L .,‘:’_ VF\
_f S
n"

L

“

.
L
\

-\

There’s a bit more to it.

* Most of these things are practical heuristics
that have been empirically discovered to work
well:

— Batched training
— Preprocessing / data augmentation
— Momentum

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph
(network), get loss

3. Backprop to calculate the gradients

4. Update the parameters using the gradient

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Updating Parameters

X += - learning rate * dx

Vv =mu * v - learning rate * dx
X

+= Vv

Momentum combines the gradient update with a direction based on the average
of recent update direction.

Update on v is usually something like:
v=(l-—b) v + b *dx

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Updating Parameters

Vanil Momentum update

X += -

momentum

actual step velocity

Moment step

Vv = mu *

X += v #

Momentum gradient
of recent upc step

Update on v is usually something like:
v=(l-b) v + b * dx

1 the average

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

nda Break

o
©O
Q
oc
o
an
O
O
)
0]
-
o™

There’s a bit more to it.

* Most of these things are practical heuristics
that have been empirically discovered to work
well:

— Batched training

— Preprocessing / data augmentation
— Momentum

— Learning rate decay

Learning Rate Decay (Annealing)

* Reduce learning rate as training continues.
— Step decay: o

wn
o

$a
<

error (%)

30
ResNet-18 AAASAA
- ResNet-34 | 34-layer
% 10 20 30 40 0

— Exponential decay
— 1/t decay

Question for you

e 2 questions on Socrative: How do convolution
layers work?

* Breakout groups of 3

— socrative.com
— room name: CSCI497P

Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ a

convolve (slide) over all

spatial locations
32 28

Convolution Layer

-

I

o

V
——0

32

consider a second, green filter

32x32x3 Image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

y

/A

28

Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum

— Learning rate decay

Weight Initialization

- Q: what happens when W=constant init is used?

output layer
input layer
hidden layer

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Weight Initialization

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Weight Initialization

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Works ~okay for small networks, but problems with
deeper networks.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Lets look at
some
activation
statistics

E.g. 10-layer net with
500 neurons on each
layer, using tanh
non-linearities, and
initializing as
described in last slide.

assume some unit gaussian 10-D input data

D = np.random.randn(1000, 500)

hidden layer sizes = [508]*10

nonlinearities = ['tanh']*len(hidden_layer sizes)

act = {'relu’':lambda x:np.maximum(0,x), 'tanh’':lambda x:np.tanh(x)}
Hs = {}
for i in xrange(len(hidden layer sizes)):
X =D if i == 0 else Hs[i-1] # input at this layer
fan_in = X.shape[1]
fan _out = hidden layer sizes[i]
W = np.random.randn(fan in, fan out) * ©.01 # layer initialization

H = np.dot(X, W) # matrix multiply
H = act[nonlinearities[i]](H) # nonlinearity
Hs[i] = H # cache result on this layer

look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean(H) for i,H in Hs.iteritems()]
layer stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems():
print 'hidden layer %d had mean %f and std %f' % (i+l, layer_means[i], layer stds[i])

plot the means and standard deviations
plt.figure()

plt.subplot(121)

plt.plot(Hs.keys(), layer means, ‘ob-')
plt.title('layer mean')

plt.subplot(122)

plt.plot(Hs.keys(), layer stds, 'or-')
plt.title('layer std')

plot the raw distributions

plt.figure()

for i,H in Hs.iteritems():
plt.subplot(1,len(Hs),i+1)
plt.hist(H.ravel(), 30, range=(-1,1))

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

input layer had mean 0.000927 and std ©0.998388

hidden layer 1 had mean -0.000117 and std ©.213081
hidden layer 2 had mean -©.000001 and std ©.847551
hidden layer 3 had mean -0.000002 and std ©.010630
hidden layer 4 had mean 0.000001 and std 0.002378
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -0.000000 and std ©.000119
hidden layer 7 had mean 0.080000 and std 0.000026
hidden layer 8 had mean -0©.000000 and std ©.000006
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std 0.000000

600002 layer mean - layer std

000020 P gy — - . -

~0.00004

-0 000

-, 008

% 3
-0 L0010
b e = - - -
- 0212 3 3 ry 3 Iy 0 1 2 3 3 g '3 ~
W0O00 e 2 0 -~ 00 20 0 0 o))
SO000 25000 40 20 10 0 0 2400 00
000 200000 200400 200300 200900 20040 2004 200000 200400
30000 qoc)C 1500 150402 1509 I 150000 1 0
20000 0¢q0 000 1000 100402 w0 wodo 00 10240
10000 So300 i [20900 SO300 S0400 0300 LO30¢ 0300
E' 0-10-0500 05 li—:‘. 005 00 C5 1ZI—Cl °-05C0 05 iil-cl:-lilf 90 05 2):".&42'5 00 05 l)-:'. 0-05 00 05 12-:13-}‘. 00 ©5 ::-:li--i". 00 05 1:.-:1:-0{ ¢0 05 190

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

input layer had mean 0.000927 and std ©0.998388

hidden layer 1 had mean -0.000117 and std ©.213081
hidden layer 2 had mean -©.000001 and std ©.847551
hidden layer 3 had mean -0.000002 and std ©.010630 . .
hidden layer 4 had mean 0.000001 and std 0.002378 ACtlvatlonS become ZerO!
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -0.000000 and std ©.000119
hidden layer 7 had mean 0.080000 and std 0.000026 . .
hidden layer 8 had mean -6.000000 and std ©.000006 What do the gradients look like?
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std 0.000000
008602 layer mean - layer std
000020 P gy — - . -
~0.00004
-0 000
-, 008
% 1§
-0 L0010
b e = - - -
- 0212 3 3 ry 3 Iy 0 1 2 3 3 g '3 ~
W0O00 e 2 0 -~ 00 20 0 0 o))
SO000 25000 40 20 10 0 0 2400 00
000 200000 200400 200300 200900 20040 2004 200000 200400
30000 qoc)C 1500 150402 1509 I 150000 1 0
20000 0¢q0 000 1000 100402 w0 wodo 00 10240
10000 So300 i [20900 SO300 S0400 0300 LO30¢ 0300
E' 0-10-0500 05 li—:‘.::—i.‘fiil Cf-lil-cl:-)!:] 05 iil-cl:-tiISC:: :52):".142'5:2 05 l)-:'.i-{'S:) :511-:13-4}‘.:‘1: ¢S ::—:li--)‘.li CS-IZIEZ:Z-'ZISC3 5 19

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

W =

Weight Initialization

np.random.randn(fan in, fan out) / np.sqrt(2/fan in)

= numel (output)

input layer had mean 0.000501 and std 0.999444 # fan_ln - numel (lnPUt)
hidden layer 1 had mean ©.562488 and std ©.825232
hidden layer 2 had mean 0.553614 and std ©.827835 # fan_out
hidden layer 3 had mean ©.545867 and std ©.813855
hidden layer 4 had mean ©.565396 and std ©.826902
hidden layer 5 had mean ©.547678 and std ©.834092
hidden layer 6 had mean ©.587103 and std ©.860035
hidden layer 7 had mean ©.596867 and std ©.870610
hidden layer 8 had mean ©.623214 and std ©.889348
hidden layer 9 had mean ©.567498 and std ©.845357
hidden layer 10 had mean 0.552531 and std 0.844523
- ayer mean layer std
4
3 | .
- .
‘."
>
. " . .
3 /
& - -
L ‘
¥ -
53 | i = - " -
.....)0 00 250400 240
) 0% N2 2001 A ‘l Wdo A.'.{.:
150000 15040 150000 1501
100000 100002 o0 10 0040 300(0
g (] 5 50 0 i [S400 04
0005101520253000051015202520000520152025300005102520253000051015202530000510252023530000510152025300005102520253000¢85%
Sli

agg;"Fgé;i\l:F:"eli:;Ifi;'jijstin Johnson, & Serena Yeung

Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015
All you need is a good init, Mishkin and Matas, 2015
Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization

Batch Normalization [loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

(k) _ E[(k)
) =]

V/ Var[z(¥)] this is a vanilla
differentiable function...

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Batch Normalization

[loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

N X

AAA

Yyvy

1. compute the empirical mean and
variance independently for each

dimension.

2. Normalize
~F) _ (k) _ E[a:(k)]
v/ Var[z(%)]

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Batch Normalization [loffe and Szegedy, 2015]

|

FC Usually inserted after Fully

BlN __ Connected or Convolutional layers,
1 and before nonlinearity.

tanh
l

FC
]

BN () zF) — E[x(k)]
1 k

" v/ Var[z(%)]

Problem: do we necessarily want a zero-
mean unit-variance input?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Batch Normalization [loffe and Szegedy, 2015]

Normalize: Details in the batchorm paper:
(k) (k) https://arxiv.org/pdf/1502.03167.pdf
~(k) _ * E[z'*]
k
\/Var[a:)] Note, the network can learn:

And then allow the network to squash V(k) — \/Var[g;(k)]
the range if it wants to:

Bk — E[z(*)]

to recover the identity

y(k‘) - ,y(k)fg(k) + Bk)

mapping.

At test time, the answer shouldn’t depend on the
batch:

* Instead, use a global average (computed during
training) of activation means and variances

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

https://arxiv.org/pdf/1502.03167.pdf

Batch Normalization

BatchNorm2d

CLASS torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0. 1,
affine=True, track_running stats=True)

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel
dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift .

z — E[z]
V/ Var|z] + €

Y= *v+

TL;DR: Using batch normalization speeds up training and
makes it less sensitive to weight initialization.

Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization and batch normalization

Model Ensembles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Why would this work?

* Using different random initializations results in training arriving at
different local minima.

* Remarkable (empirical) fact: performance of each one is similar!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

S+ Single Model M
04. Standard LR Schedule [/
0.3 (
02~
o 0
Y
TR
02 NG Wi~
W \;4
-03
50 T~ P 5
40 --.""")
30 o, Lt " 30
20 ~ 20

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free", ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

05+ Single Model A %57 Snapshot Ensemble ,:"?} 10t ~i1arl0 @=100k=24, B=300 epochs)
wal Standard LR Schedule { Y \ 0.4 CyC'iC LR Schedule /‘.‘ W\ = Standard Ir scheduling
: ‘ —— Cosine annealing with restart Ir 0.1
03] R 03 10° | | | | |
02- 02- | | | | |
{ w
0.1 0.1) 1 E 10
= o d q g
61 0.1 &1 /} 57 3 102
02 02l H”' ‘QJ e
&)
03 034 = P 10 I
04 = k: 04, - r 1 Model | Model | Model | Model | Model | Model
50 T b ™" 0] B0, i E = 50 1 2 3 4 5 6
0 T : 40 0 T 40 10 L 1 1 1 1
0 - e 30 30 T " 30 0 50 100 150 200 250 300
20 b 20 20 = 2
Epochs
Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 CyC“C Iearnlng I'ate SCthUleS can
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017 make this work even better!

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization and batch normalization
— Ensembling

Regularization: Reminder

* Penalizes large weights to prevent the model
from fitting training data too closely (overfitting)

— Helps network generalize to unseen data

* L2 regularization forces parameters to be used
“equally”

— parameters with similar magnitudes will have a lower
regularization cost than mostly zero with a few huge
values.

* Another way to force the network to use all its
parameters equally: randomly drop parameters
each training iteration!

Another way to force the network to use all its parameters
equally: randomly drop parameters each training iteration!

Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization: Dropout

p=0.5/1

def train_step(X):

"vr X contains the data

H1
Ul
H1
H2
U2
H2

np.maximum(©®, np.dot(Wl, X) + bl)
= np.random.rand(*H1l.shape) < p

*= |J] #

= np.maximum(®, np.dot(W2, H1l) + b2)
= np.random.rand(*H2.shape) < p #

*= |2 ;

out = np.dot(W3, H2) + b3

Example forward
pass with a
3-layer network
using dropout

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tall ﬂ—k

is furry —X—— . cat
.~ score

has claws +/
mischievous

look

T

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 10723 possible masks!
Only ~ 1082 atoms in the universe...

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Dropout: Test time

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©, np.dot(W2, Hl1l) + b2) * p
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

""" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

p=0.5# probability of keeping a unit active. higher = less dropout

def train_step(X):

‘" X contains the data """
forward pass for example 3
H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # first dropout mask
H1 *= Ul # drop! .
AZ = np.maximum(U, np.dot(WZ, HI) + b2) drop 18] forward paSS
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

7 e . | nntirn el
-Layer neuratl network

backward pass: compute gradients... (not shown)

~rf - NS ram - ! -~ " c
perform parameter update... (not shown)

def predict(X):
ensembled forward pass
Hl1 = np.maximum(©, np.dot(Wl, X) + bl)|* p # NOTE: scale the activations
H2 = np.maximum(©, np.dot(W2, Hl1) + b2) * p # NOTE: scale the activations E;(:Eilea Eat tEBSSt ter]Ga
out = np.dot(W3, H2) + b3

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

More common: “Inverted dropout

~-nhabhilitv of P "7 artive hinhar = lace dropoi
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

forward pass for example 3-layer neural network

H1 = np.maximum(®, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
Hl *= Ul # drop!

H2 = np.maximum(©®, np.dot(W2, Hl) + b2)

U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)

perform parameter update... (not shown) t ‘t t. . t] (j'
est uime IS unchangea:

ensembled forward pass

H1 = np.maximum(©, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, Hl) + b2)
out = np.dot(W3, H2) + b3

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization and batch normalization
— Ensembling
— Dropout

Next Up: CNN Architecture Tour

 What happened since AlexNet?
* There’s a general theme:

-
£

»
.

.l

\

WE NEED TO GO
" DEEPER

