CSCI 497P/597P: Computer Vision

Regularization
CNNs: Interpretation, Practicalities
Readings

with a great deal more detail...

• https://cs231n.github.io/neural-networks-2/
• https://cs231n.github.io/convolutional-networks/
Goals (Last Lecture)

• Understand why we need activation functions.
• Understand the motivation and behavior of convolutional layers in neural networks.
• Understand the degrees of freedom available in setting up a convolution layer:
 – Output channels, kernel size, padding, stride
• Know the meaning of the various basic layers involved in standard CNN architectures
 – Conv, ReLU, Pool, Fully Connected
Goals (Today)

• Understand the purpose of applying regularization in machine learning training.
• Know what overfitting means and why it’s bad.
• Gain intuition for the meaning of intermediate layers in CNNs.
• Know the idea and purpose of each of the following tricks used when training CNNs:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Dropout
 – Weight initialization and batch normalization
Announcements

• HW5 still doesn’t exist. It will be short, optional, or both, with the goal of helping you prepare for the final.
• P2 grading is in progress.
Announcements

• P4 is out. You will:
 – Modify a trained 1000-class classifier to turn it into a 2-class “dog vs food” classifier.
 – Misuse backpropagation to:
 • see which input pixels are most influential in classifying it
 • trick the classifier into predicting the wrong class
 • synthesize images that maximize a chosen class score
Announcements

• P4 is out. You will:
 – Modify a trained 1000-class classifier to turn it into a 2-class “dog vs food” classifier.
 – Misuse backpropagation to:
 • see which input pixels are most influential in classifying it
 • trick the classifier into predicting the wrong class
 • synthesize images that maximize a chosen class score
Announcements

– Misuse backpropagation to:
 • see which input pixels are most influential (saliency)
 • trick the classifier into predicting the wrong class
 • synthesize images that maximize a chosen class score
Announcements

– Misuse backpropagation to:
 • see which input pixels are most influential in classifying it
 • **trick the classifier into predicting the wrong class**
 • synthesize images that maximize a chosen class score

![Images of dogs and snails with differences shown]

dog snail difference
Announcements

– Misuse backpropagation to:
 • see which input pixels are most influential in classifying it
 • trick the classifier into predicting the wrong class
 • synthesize images that maximize a chosen class score
Machine Learning Aside: Regularization

• Suppose we’ve learned a linear classifier W such that $L = 0$: it classifies everything perfectly.

• Is this W unique?
Regularization

• Suppose we’ve learned a linear classifier W such that $L = 0$: it classifies everything perfectly.

• Is this W unique?

No! $2W$ is also has $L = 0$!
Which do we prefer – W, or $2W$?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
Regularization: Prefer Simpler Models
Regularization: Prefer Simpler Models
overfitting: learning the training data too well, to the detriment of performance on unseen data
A more interesting example of non-uniqueness...
Regularization

\[L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) \]

Data loss: Model predictions should match training data
Regularization

\[L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W) \]

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
Regularization

\[L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W) \]

- **Data loss**: Model predictions should match training data
- **Regularization**: Prevent the model from doing too well on training data

Simple examples

- **L2 regularization**: \(R(W) = \sum_k \sum_l W_{k,l}^2 \)
- **L1 regularization**: \(R(W) = \sum_k \sum_l |W_{k,l}| \)
- **Elastic net (L1 + L2)**: \(R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}| \)

\(\lambda \) = regularization strength (hyperparameter)
Regularization in CNNs

• AKA “weight decay”
Convolutional Neural Networks

Neural Network

Convolutions

Nonlinearities!
Consider a second, green filter.

- **Convolution Layer**
 - 32x32x3 image
 - 5x5x3 filter

 Activation Maps
 - convolution (slide) over all spatial locations
 - 28x28x1
CNNs before they were cool: LeNet-5 [LeCun et al., 1998]

- Today’s architectures still look a lot like this!
The CNN that made them cool: AlexNet [Krizhevsky et al. 2012]
The CNN that made them cool: AlexNet [Krizhevsky et al. 2012]

- What happened?
The CNN that made them cool: AlexNet [Krizhevsky et al. 2012]

• What changed?
 – Bigger training data: ImageNet has 14 million images and 20,000 categories.
 • (performance numbers are on a 1000-category subset)
 – GPU implementation of ConvNets
 • Train bigger, deeper networks for longer than before
 – ReLU
 • Not new in AlexNet, but a necessary design choice to avoid vanishing gradients in deep network

• Hence “deep learning”:
 – a rebranding of formerly unfashionable neural networks
What do all these feature maps mean?

The filters:

Some image patches that have high activations on those filters:

Visualizations from
[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]
What do all these feature maps mean?

The filters, “deconvolved” back into pixel space (see the paper):

Some image patches that have high activations on those filters:

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]
What do all these feature maps mean?

The filters, “deconvolved” back into pixel space (see the paper):

Some image patches that have high activations on those filters:

[Layer 3]

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]
What do all these feature maps mean?

Layer 4

Layer 5

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]
What do all these feature maps mean?

M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014
Another View: Visualizing AlexNet in 2D with t-SNE

How do you get this to work?

• Basic version:
 – Download the 1281167 images in ImageNet
 – Feed an image into network, compute gradient of loss wrt parameters, update parameters.
 – Repeat a few times (1.5 billion should do it)
There’s a bit more to it.

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Dropout
 – Weight initialization and batch normalization
How do you get this to work?

Mini-batch SGD

Loop:
1. **Sample** a batch of data
2. **Forward** prop it through the graph (network), get loss
3. **Backprop** to calculate the gradients
4. **Update** the parameters using the gradient
Batched Training

• Stochastic gradient descent, technically:
 – Sample a single random datapoint
 – Compute the loss
 – Update the parameters

• What people actually mean when they say SGD: Minibatch Gradient Descent
 – Shuffle your dataset
 – Iterate over batches of (batch_size) images:
 • Feed the whole batch through the network
 • Compute loss and update parameters

• What size batches?
 – Whatever your GPU can push through the model at once. 16, 32, 64, 256, ...
There’s a bit more to it.

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Dropout
 - Weight initialization and batch normalization
Networks learn better on zero-centered data.

Before normalization: classification loss very sensitive to changes in weight matrix; hard to optimize

After normalization: less sensitive to small changes in weights; easier to optimize
Step 1: Preprocess the data

In practice: Average all images in the dataset and subtract that from each input.
Dividing by stdev isn’t usually done.

(Assume X [NxD] is data matrix, each example in a row)
Data Augmentation

• When >1 million training images is not enough:
 – Randomly Flip, Scale, Crop, Rotate, Perturb brightness and color
 – Example:

```python
import torchvision.transforms as tvt
transforms = tvt.Compose(
    [tvt.Resize((224,224)),
     tvt.ColorJitter(hue=.05, saturation=.05),
     tvt.RandomHorizontalFlip(),
     tvt.RandomRotation(20, resample=PIL.Image.BILINEAR)])
```
Data Augmentation
There’s a bit more to it.

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Dropout
 – Weight initialization and batch normalization
Mini-batch SGD

Loop:
1. **Sample** a batch of data
2. **Forward** prop it through the graph (network), get loss
3. **Backprop** to calculate the gradients
4. **Update** the parameters using the gradient
Updating Parameters

Vanilla update
```python
x += - learning_rate * dx
```

Momentum update
```python
v = mu * v - learning_rate * dx # integrate velocity
x += v # integrate position
```

Momentum combines the gradient update with a direction based on the average of recent update direction.

Update on v is usually something like:

```
v = (1 - b) v + b * dx
```
Momentum combines the gradient update with a direction based on the average of recent update directions.

Update on v is usually something like:

$$v = (1 - b) \ v + b \ * \ dx$$
30 Second Red Panda Break
There’s a bit more to it.

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Dropout
Learning Rate Decay (Annealing)

• Reduce learning rate as training continues.
 – Step decay:
 – Exponential decay
 – $1/t$ decay
Question for you

- 2 questions on Socrative: How do convolution layers work?
- Breakout groups of 3
 - socrative.com
 - room name: CSCI497P
Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map
Convolution Layer

Consider a second, green filter

32x32x3 image
5x5x3 filter

Convolve (slide) over all spatial locations

Activation maps

32 32
3 3

1 28
28
Training CNNs

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Weight initialization and batch normalization
 – Ensembling
 – Dropout
Weight Initialization

- Q: what happens when $W=$constant init is used?
Weight Initialization

- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[W = 0.01 \times \text{np.random.randn}(D,H) \]
Weight Initialization

- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[W = 0.01\times \text{np.random.randn}(D,H) \]

Works \sim okay for small networks, but problems with deeper networks.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
Let's look at some activation statistics.

E.g. 10-layer net with 500 neurons on each layer, using tanh non-linearities, and initializing as described in last slide.

```
# assume some unit gaussian 10-D input data
D = np.random.randn(1000, 500)
hidden_layer_sizes = [500]*10
nonlinearities = ['relu'] * len(hidden_layer_sizes)

act = {'relu': lambda x: np.maximum(0, x), 'tanh': lambda x: np.tanh(x)}
Hs = []
for i in xrange(len(hidden_layer_sizes)):
    X = D if i == 0 else Hs[i-1]  # input at this layer
    fan_in = X.shape[1]
    fan_out = hidden_layer_sizes[i]
    W = np.random.randn(fan_in, fan_out) * 0.01  # layer initialization
    H = np.dot(X, W)  # matrix multiply
    H = act[nonlinearities[i]](H)  # nonlinearity
    Hs[i] = H  # cache result on this layer

# look at distributions at each layer
print '{:14} : mean {:.3f} std {:.3f}'.format('input layer', np.mean(D), np.std(D))
layer_means = [np.mean(H) for i, H in Hs.iteritems()]
layer_stds = [np.std(H) for i, H in Hs.iteritems()]
for i, H in Hs.iteritems():
    print '{:14} : mean {:.3f} std {:.3f}'.format('layer %d' % (i+1), layer_means[i], layer_stds[i])

# plot the means and standard deviations
plt.figure()
plt.subplot(121)
plt.plot(Hs.keys(), layer_means, 'ob-')
plt.title('layer mean')
plt.subplot(122)
plt.plot(Hs.keys(), layer_stds, 'or-')
plt.title('layer std')

# plot the raw distributions
plt.figure()
for i, H in Hs.iteritems():
    plt.subplot(1, len(Hs), i+1)
    plt.hist(H.ravel(), 30, range=(-1, 1))
```
input layer had mean 0.000927 and std 0.998388
hidden layer 1 had mean -0.000117 and std 0.213801
hidden layer 2 had mean -0.000001 and std 0.047551
hidden layer 3 had mean -0.000002 and std 0.010630
hidden layer 4 had mean -0.000000 and std 0.002378
hidden layer 5 had mean -0.000000 and std 0.000532
hidden layer 6 had mean -0.000000 and std 0.000119
hidden layer 7 had mean 0.000000 and std 0.000026
hidden layer 8 had mean -0.000000 and std 0.000006
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std 0.000000
Activations become zero!

What do the gradients look like?
Weight Initialization

\[W = \frac{\text{np.random.randn}(\text{fan_in}, \text{fan_out})}{\sqrt{2/\text{fan_in}}} \]

\text{fan_in} = \text{numel}(\text{input})
\text{fan_out} = \text{numel}(\text{output})
Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al., 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

...
Training CNNs

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Weight initialization and batch normalization
 – Ensembling
 – Dropout
Batch Normalization

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

\[\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}} \]

this is a vanilla differentiable function...
Batch Normalization

“you want zero-mean unit-variance activations? just make them so.”

1. compute the empirical mean and variance independently for each dimension.

\[
\tilde{x}(k) = \frac{x(k) - E[x(k)]}{\sqrt{\text{Var}[x(k)]}}
\]

2. Normalize
Batch Normalization

[ioffe and Szegedy, 2015]

Problem: do we necessarily want a zero-mean unit-variance input?

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

\[
\tilde{x}(k) = \frac{x(k) - \mathbb{E}[x(k)]}{\sqrt{\text{Var}[x(k)]}}
\]
Batch Normalization

Normalize:

\[
\hat{x}(k) = \frac{x(k) - \mathbb{E}[x(k)]}{\sqrt{\text{Var}[x(k)]}}
\]

And then allow the network to squash the range if it wants to:

\[
y(k) = \gamma(k) \hat{x}(k) + \beta(k)
\]

Note, the network can learn:

\[
\gamma(k) = \sqrt{\text{Var}[x(k)]}
\]
\[
\beta(k) = \mathbb{E}[x(k)]
\]

to recover the identity mapping.

- At test time, the answer shouldn’t depend on the batch:
 - Instead, use a global average (computed during training) of activation means and variances
Batch Normalization

BatchNorm2d

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper *Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift*.

\[y = \frac{x - E[x]}{\sqrt{Var[x] + \epsilon}} \ast \gamma + \beta \]

TL;DR: Using batch normalization speeds up training and makes it less sensitive to weight initialization.
Training CNNs

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Weight initialization and batch normalization
 – Ensembling
 – Dropout
Model Ensembles

1. Train multiple independent models
2. At test time average their results
 (Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Why would this work?
• Using different random initializations results in training arriving at different local minima.
• Remarkable (empirical) fact: performance of each one is similar!
Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017
Figures copyright Yikuan Li and Geoff Pleiss, 2017. Reproduced with permission.
Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Cyclic learning rate schedules can make this work even better!
Training CNNs

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Weight initialization and batch normalization
 – Ensembling
 – Dropout
Regularization: Reminder

• Penalizes large weights to prevent the model from fitting training data too closely (overfitting)
 – Helps network generalize to unseen data
• L2 regularization forces parameters to be used “equally”
 – parameters with similar magnitudes will have a lower regularization cost than mostly zero with a few huge values.
• Another way to force the network to use all its parameters equally: randomly drop parameters each training iteration!
Another way to force the network to use all its parameters equally: **randomly drop parameters** each training iteration!

Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Regularization: Dropout

\[p = 0.5 \] # probability of keeping a unit active. higher = less dropout

```python
def train_step(X):
    """ X contains the data """

    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np.random.rand(*H1.shape) < p # first dropout mask
    H1 *= U1 # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = np.random.rand(*H2.shape) < p # second dropout mask
    H2 *= U2 # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout
Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation; Prevents co-adaptation of features

- has an ear
- has a tail
- is furry
- has claws
- mischievous look

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large **ensemble** of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks!
Only $\sim 10^{82}$ atoms in the universe...
Dropout: Test time

```python
def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p  # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p  # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

At test time all neurons are active always

=> We must scale the activations so that for each neuron:

output at test time = expected output at training time
vanilla dropout: not recommended implementation (see notes below)

```python
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
    """ X contains the data """

    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np.random.rand(*H1.shape) < p # first dropout mask
    H1 *= U1 # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = np.random.rand(*H2.shape) < p # second dropout mask
    H2 *= U2 # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)

def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

dropout summary

- drop in forward pass
- scale at test time
More common: “Inverted dropout”

```python
p = 0.5  # probability of keeping a unit active. higher = less dropout

def train_step(X):
    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = (np.random.rand(*H1.shape) < p) / p  # first dropout mask. Notice /p!
    H1 *= U1  # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = (np.random.rand(*H2.shape) < p) / p  # second dropout mask. Notice /p!
    H2 *= U2  # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)

def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1)  # no scaling necessary
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    out = np.dot(W3, H2) + b3
```

test time is unchanged!
Training CNNs

• Most of these things are practical heuristics that have been empirically discovered to work well:
 – Batched training
 – Preprocessing / data augmentation
 – Momentum
 – Learning rate decay
 – Weight initialization and batch normalization
 – Ensembling
 – Dropout
Next Up: CNN Architecture Tour

• What happened since AlexNet?
• There’s a general theme:

WE NEED TO GO DEEPER