
Regularization
CNNs: Interpretation, Practicalities

CSCI 497P/597P: Computer Vision

Readings

• https://cs231n.github.io/neural-networks-2/
• https://cs231n.github.io/neural-networks-3/
• https://cs231n.github.io/convolutional-

networks/

with a great deal more detail…

http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/linear-classify/

Goals (Last Lecture)

• Understand why we need activation functions.
• Understand the motivation and behavior of

convolutional layers in neural networks.
• Understand the degrees of freedom available

in setting up a convolution layer:
– Output channels, kernel size, padding, stride

• Know the meaning of the various basic layers
involved in standard CNN architectures
– Conv, ReLU, Pool, Fully Connected

Goals (Today)

• Understand the purpose of applying regularization in machine
learning training.

• Know what overfitting means and why it’s bad.
• Gain intuition for the meaning of intermediate layers in CNNs.
• Know the idea and purpose of each of the following tricks used

when training CNNs:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Dropout
– Weight initialization and batch normalization

Announcements

• HW5 still doesn’t exist. It will be short,
optional, or both, with the goal of helping
you prepare for the final.

• P2 grading is in progress.

Announcements

• P4 is out. You will:
– Modify a trained 1000-class

classifier to turn it into a 2-class
“dog vs food” classifier.

– Misuse backpropagation to:
• see which input pixels are most

influential in classifying it
• trick the classifier into predicting the

wrong class
• synthesize images that maximize a

chosen class score

Announcements

• P4 is out. You will:
– Modify a trained 1000-class

classifier to turn it into a 2-class
“dog vs food” classifier.

– Misuse backpropagation to:
• see which input pixels are most

influential in classifying it
• trick the classifier into predicting the

wrong class
• synthesize images that maximize a

chosen class score

Announcements

– Misuse backpropagation to:
• see which input pixels are most influential (saliency)
• trick the classifier into predicting the wrong class
• synthesize images that maximize a chosen class score

Announcements

– Misuse backpropagation to:
• see which input pixels are most influential in classifying it
• trick the classifier into predicting the wrong class
• synthesize images that maximize a chosen class score

dog snail difference

Announcements

– Misuse backpropagation to:
• see which input pixels are most influential in classifying it
• trick the classifier into predicting the wrong class
• synthesize images that maximize a chosen class score

Machine Learning Aside:
Regularization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

• Suppose we’ve learned a linear classifier W such
that L = 0: it classifies everything perfectly.

• Is this W unique?

Regularization

No! 2W is also has L = 0!
Which do we prefer – W, or 2W?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

• Suppose we’ve learned a linear classifier W
such that L = 0: it classifies everything
perfectly.

• Is this W unique?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

overfitting: learning the training data too well,
to the detriment of performance on unseen data

A more interesting example of non-
uniqueness…

Regularization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization in CNNs

• AKA “weight decay”

Convolutional Neural Networks

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Nonlinearitites!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Convolutions

CNNs before they were cool: LeNet-5
[LeCun et al., 1998]

• Today’s architectures still look a lot like this!

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

11x11 5x5 3x3 3x3 3x3

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

• What happened?

• What changed?
– Bigger training data: ImageNet has 14 million images and

20,000 categories.
• (performance numbers are on a 1000-category subset)

– GPU implementation of ConvNets
• Train bigger, deeper networks for longer than before

– ReLU
• Not new in AlexNet, but a necessary design choice to avoid

vanishing gradients in deep network

• Hence “deep learning”:
– a rebranding of formerly unfashionable neural networks

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

What do all these feature maps mean?

The filters:

Some image
patches that have
high activations on
those filters:

Visualizations from
[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]

What do all these feature maps mean?
The filters, “deconvolved” back
into pixel space (see the paper):

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]

Some image patches that have high
activations on those filters:

What do all these feature maps mean?
The filters, “deconvolved” back
into pixel space (see the paper):

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]

Some image patches that have high
activations on those filters:

What do all these feature maps mean?

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]

What do all these feature maps mean?

[M.D. Zeiler and R. Fergus: Visualizing and Understanding Convolutional Networks, ECCV 2014]

Another View: Visualizing AlexNet in 2D with t-SNE

[Donahue, “DeCAF: DeCAF: A Deep Convolutional …”, arXiv 2013](2D visualization using t-SNE)

Linear
Classifier

How do you get this to work?

• Basic version:
– Download the 1281167 images in ImageNet
– Feed an image into network, compute gradient of

loss wrt parameters, update parameters.
– Repeat a few times (1.5 billion should do it)

There’s a bit more to it.

• Most of these things are practical heuristics
that have been empirically discovered to work
well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Dropout
– Weight initialization and batch normalization

How do you get this to work?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Batched Training
• Stochastic gradient descent, technically:

– Sample a single random datapoint
– Compute the loss
– Update the parameters

• What people actually mean when they say SGD: Minibatch
Gradient Descent
– Shuffle your dataset
– Iterate over batches of (batch_size) images:

• Feed the whole batch through the network
• Compute loss and update parameters

• What size batches?
– Whatever your GPU can push through the model at once. 16,

32, 64, 256, …

There’s a bit more to it.

• Most of these things are practical heuristics
that have been empirically discovered to work
well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Dropout
– Weight initialization and batch normalization

Networks learn better on zero-
centered data.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Preprocessing

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

In practice: Average all images in the dataset and subtract that
from each input.
Dividing by stdev isn’t usually done.

Data Augmentation

• When >1 million training images is not
enough:
– Randomly Flip, Scale, Crop, Rotate, Perturb

brightness and color
– Example:

import torchvision.transforms as tvt
transforms = tvt.Compose([

tvt.Resize((224,224)),
tvt.ColorJitter(hue=.05, saturation=.05),
tvt.RandomHorizontalFlip(),
tvt.RandomRotation(20, resample=PIL.Image.BILINEAR)

])

Data Augmentation

There’s a bit more to it.

• Most of these things are practical heuristics
that have been empirically discovered to work
well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Dropout
– Weight initialization and batch normalization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Updating Parameters

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Momentum combines the gradient update with a direction based on the average
of recent update direction.

Update on v is usually something like:
v = (1 – b) v + b * dx

Updating Parameters

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Momentum combines the gradient update with a direction based on the average
of recent update direction.

Update on v is usually something like:
v = (1 – b) v + b * dx

30 Second Red Panda Break

There’s a bit more to it.

• Most of these things are practical heuristics
that have been empirically discovered to work
well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Dropout

Learning Rate Decay (Annealing)

• Reduce learning rate as training continues.
– Step decay:

– Exponential decay
– 1/t decay

Question for you

• 2 questions on Socrative: How do convolution
layers work?

• Breakout groups of 3
– socrative.com
– room name: CSCI497P

Training CNNs

• Most of these things are practical heuristics that
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout

Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Activations become zero!

What do the gradients look like?

Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

W = np.random.randn(fan_in, fan_out) / np.sqrt(2/fan_in)
fan_in = numel(input)
fan_out = numel(output)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Training CNNs

• Most of these things are practical heuristics that
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Problem: do we necessarily want a zero-
mean unit-variance input?

Details in the batchorm paper:
https://arxiv.org/pdf/1502.03167.pdf

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

• At test time, the answer shouldn’t depend on the
batch:
• Instead, use a global average (computed during

training) of activation means and variances

https://arxiv.org/pdf/1502.03167.pdf

Batch Normalization

TL;DR: Using batch normalization speeds up training and
makes it less sensitive to weight initialization.

Training CNNs

• Most of these things are practical heuristics that
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Why would this work?
• Using different random initializations results in training arriving at

different local minima.
• Remarkable (empirical) fact: performance of each one is similar!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Training CNNs

• Most of these things are practical heuristics that
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout

Regularization: Reminder

• Penalizes large weights to prevent the model
from fitting training data too closely (overfitting)
– Helps network generalize to unseen data

• L2 regularization forces parameters to be used
“equally”
– parameters with similar magnitudes will have a lower

regularization cost than mostly zero with a few huge
values.

• Another way to force the network to use all its
parameters equally: randomly drop parameters
each training iteration!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Another way to force the network to use all its parameters
equally: randomly drop parameters each training iteration!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Training CNNs

• Most of these things are practical heuristics that
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout

Next Up: CNN Architecture Tour

• What happened since AlexNet?
• There’s a general theme:

