CSCI 497P/597P: Computer Vision

Neural Networks: Activation Functions
Gradient Descent in Neural Networks
(Backpropagation)

Readings

with a great deal more detail...

nttp://cs231n.git

hub.io/optimization-2/

nttp://cs231n.git

hub.io/neura

-networ

ks-1/

ttp://cs231n.git

hub.io/neura

-networ

ks-2/

ttp://cs231n.git

hub.io/neura

-networ

ks-3/

Neural Networks: Nonlinear Classifiers
built from Linear Classifiers

3 hidde neurons 6 hidden neurons | 20 hidde neurons

Figures: Fei-Fei Li, Justin Johnson, & Serena Yeung

Neural networks: without the brain stuff

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network f = W5 max(0, Wiz)
or 3-layer Neural Network

f = W3 max(0, W max (0] W;z))

27?7

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Neural Networks

Neural Network

Linear
classifiers

Neural networks: without the brain stuff

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network f = W5 max(0, Wiz)
or 3-layer Neural Network

f = W3 max(0, W max (0] W;z))

27?7

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Activation Functions

flz, W) =Wx

Activation Functions

fle, W) =W

A linear classifier can only do so well...

Activation Functions

flz, W) =Wx
f(%, Wi, WQ) — qu/‘_/%zj)

1

Let’s try stacking two linear classifiers together

Activation

fle, W) =Wx

Functions

f(a, Wi, Wa) =(W, §W2>I)

}

W <+ W1W2

[flew =]

Uh oh —linear functions compose to linear

® e ©
° o
()
® ()
® o
(I J
® ()
functions.

Activation Functions

flz, W) =Wx
f(il?, Wl, Wz) — Wl(ng)

W <+ W1W2
fla, W) =Wu

Uh oh —linear functions compose to linear

Activation Functions
f(.CIZ, Wl, WQ, Wg) — Wg aX(O, W2 Eax((DEVlaz)

sy

) i
/ /

A ... “/ r » PY .‘
[J ®

Nonlinearities prevent the composed linear functions from collapsing into a single
one.

- e

Neural Networks

Neural Network

Linear
classifiers

Neural Networks

Neural Network

Linear
classifiers

Nonlinearitites!

Neural Networks: Nonlinear Classifiers
built from Linear Classifiers

3 hidde neurons 6 hidden neurons | 20 hidde neurons

Figure: Fei-Fei Li, Justin Johnson, & Serena Yeung

Activation Functions

Maxout
max(w{ z + by, wd z + by)

\/ ELU .-/
T z >0
0 {Oz(eﬂlc —-1) z<0 - 7 10

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

(Stochastic) Gradient Descent:
In Practice

hil -

= - | W, Uz
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, @
weights += - step size * weights grad

\/v\@ s . Q,@mé

-~

)< k) W@*)
o0 M QP 93

d 5 o
1

Backpropagation in Pytorch

* Your deep learning framework knows how to
differentiate anything you might want to do.

 Exmple, in pytorch:
— Your classifier inherits fron@
— You implement its metho
— Torch generates method for you!<~

— Training looks like this (pseudocode)
output = classifier(data) # uses W, b
loss = loss function(output, true labels)
/;aloss.backward() # (backprop magic here!)
dW = w.grad
db = b.grad
W -= step size * dW
b -= step size * db

Backpropagation in Pytorch

 Example, in pytorch (pseudocode):
output = classifier(data, W, b) # uses W, b
loss = loss function(output, true labels)
loss.backward() # (backprop magic here!)
QW = w.grad

db = b.grad
W -= step size * dW
b -= step size * db

* |n practice, an Optimizer performs the upd instead:
optimizer = torch.optim.SGI(net.parameters|(
1r=0.0001)

/3output = classifier(data)
oss = loss function(output, true labels
g loss_ function(output, true labels)
loss.backward()

<§§E}Tizer.ste€§?>

Demo

* A hand-rolled linear classifier in pytorch.

* Takeaways:
— compute loss = my _loss _fn(X,y, W, ...)
— call loss.backward()

— W.grad now contains the gradient of the loss with
respect to W!

Two important pieces

* The feature extractor (¢)

* The classifier (h)

The last layer of (most) neural
networks are linear classifiers

This piece is just a linear classifier

Input Perform everything with a big neural
Pixels network, trained end-to-end

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable

The last layer of (most) neural
networks are linear classifiers

Th t I . I .f. h
Ei Ei %
B B B
§ B <& By Bl g »
£ B 41 B BN
B B i i /o o Al ECHHR AN
v g T ;!’ :i H Eg BB -
B B = M B Bl ’m:! 3 B T B U =
Bl EEy L Er = B ;g il E
£l Ei

B (GoogLeNet)
Input Perform everything with a big neural
Pixels network, trained end-to-end

The network is the feature extractor and the classifier.

@wallowe@

A Linear Classifier

* y=Wx+b

e Every row of y corresponds to a hyperplane in
X space

The case whend;,=2. A
single row in y plotted
for every possible value
of x

Linear Classifier: Parameter Count

* How many parameters does a linear function
have? Suppose:

— # pixels =256* 25 = 65536

— H# classes 4 52

The case whend;,=2. A
single row in y plotted
for every possible value
of x

The linear function for images

~

1024
~ 65K

65K

(not to scalel)

Linear Classifier: Parameter Count

* How many parameters does a linear function
have? Suppose:

— # pixels = 256*256 = 65536 = 216
— # classes = 1024 = 210

°parameters for a one-layer network on a tiny
Image.

* More Iayers mMmeans more parameters:
— more computation
— difficult to train

* Can we make better use of parameters?

ldea 1: local connectivity

* Pixels only related to nearby pixels

ldea 2: Translation invariance

* Pixels only related to nearby pixels
* Weights should not depend on the location of
the neighborhood

Linear function + translation invariance

* Local connectivity determines kernel size

5.4

0.1

3.6

1.8

2.3

4.5

11

3.4

7.2

= convolution

Convolution Layer

32x32x3 image -> preserve spatial structure

7

32 height

32 width

3 depth

Convolution Layer

32x32x3 image

/ 5x5x3 filter

32

/m Convolve the filter with the image
- i.e. “slide over the image spatially,

computing dot products”
A

X

CO nVOI Ut|0n Layer Filters always extend the full
. depth of the input volume
32x32xg\image /
/ 5x5%3filter
32 £/
Il Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”
A

w|

Convolution Layer
__— 32x32x3 image

5x5x3 filter w
2

=\

™~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz +b

N

w |

Convolution Layer

activation map

32x32x3 image

/
P 5x5x3 filter /

convolve (slide) over all

spatial locations
28

28

=\

N\

w|
—

Convolution Layer

;

consider a second, green filter

32x32x3 image

N

%

w |

=

/
/ y 5x5x3 filter

convolve (slide) over all
spatial locations

/"

activation maps

.

L

28

Convolution as a general layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

Convolution Layer

A A

3 6

We stack these up to get a “new image” of size 28x28x6!

28

Convolutional Neural Networks

* Convolution layers interspersed with
activation functions.

VA4S

CONV,
RelLU

e.g.6
5x5x3
|| 32 filters

A

@

.

CONV,
RelLU

Convolution as a primitive

< 7 >
X C

Convolution as a feature detector

e score at (x,y) = dot product (filter, image patch
at (x,y))

e Response represents similarity between filter
and image patch

Kernel sizes and padding

Kernel sizes and padding

* Valid convolution decreases size by (k-1)/2 on
each side

— Pad by (k-1)/2, or o
— Allow spatial dimensions |88 jw_,
to shrink. CA Valid b‘ :r:

' . convolution

torch.nn.Conv2d

* torch.nn.Conv2d(

— in_channels, # channelsin input feature map
—=out_channels, # filters to learn (== channels in the output)

—=kernel_size, # size of each filter kernel

—~stride=1, # move this many pixels when sliding filter
— padding=0, # pad the input by this much (can be tuple)

add a bias after convolution?
)

Convolutional Layers

”

* Feature maps (“hidden layers”, “activations”,
etc.) are no longer column vectors but 3D
blobs:

— Input # 256x256x3
— Conv2d(in: 3, out:10) # 255x255x10
— Conv2d(in: 10, out:20) # 255x255x20

Convolutional Layers

* Feature maps (“hidden layers”, “activations”,
etc.) are no longer column vectors but 3D
blobs:

— Input # 256x256x3
— Conv2d(in: 3, out:10) # 255x255x10
— Conv2d(in: 10, out:20) # 254x254x20

— ... this could get large quickly, and we ultimately
need a vector that we can apply a linear classifier
to.

Downsampling, Subsampling, Pooling

Downsampling: Max pooling:
224x224x64 Single depth slice
112x112x64 4 '
pool 2 1.:1)12 | 4 | |
—_— p— AN\ max pool with 2x2 filters
516)7 (8\ and stride 2 6| 8
3)2 |10 3|4
N\ \\j
' T 12| 3|(4)
> RO 112 >
224 downsampling y
112

224

* Reducing spatial dimensions:

— Subsample (e.g. throw away every other pixel)
— Average pooling

— Max pooling (most commonly used)

Convolutional Networks

/()

* Feature maps (“hidden layers”, “activations”, etc.)
are no longer column vectors but 3D blobs:

) — Input # 256x256x3
— — Conv2d(in: 3, out:10) # 255x255
—~>~ Subsample (2x2)
~>— Conv2d(in: 10, out:20) # 127x127
— Conv/subsample until 1x1xC

— Or at some point, just unravel HxXWxC into HWCx1
vector

— Then apply a Iiniclas/s—i@

CNNs before they were cool: LeNet-5
[LeCun et al., 1998]

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28 r‘\
o S0 1anid r a6 Ve Fe: Iay (\ oUTRY
) \3}

‘ Full conAect»on ’ Gaussian connections

onvolutions Subsampling Convoluhons Subsamplmg MFuII oonnec'uon

* Today’s architectures still Iook a lot like th|s!

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

224

22@

1ss

48

ENE

s

192

13

192

192

The CNN that made them cool: AlexNet

Input data

227% 227 x 3
11x11

27X 27 X 256
55x 55 X 96

[Krizhevsky et al. 2012]

Conv2

Convl

5x5

3x3

Conv3 Conv4
=] . | £ .. | &
L |

13x 13 x 384 13x 13 x 384

3x3

3x3

Convs

FC6 FC7 FC8

13x 13 X 256

4096 4096

1000

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

 What happened?

30 -

28.2
258
25 -
20 -
16.4
15
11.7
10
7.3 6.7
S I I) 3.5
0 1 1

ILSVRC ILSVR(Q ILSVRC |LSVRC ILSVRC ILSVRC Human ILSVRC
2010 2011| 2012 |2013 2014 2014 Performance 2015
NEC Xerox|AlexNet [Clarifi VGG GoogleNet ResNet
America

ImageNet classification top-5 error (%)

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

* What changed?

— Bigger training data: ImageNet has 14 million images and
20,000 categories.

* (performance numbers are on a 1000-category subset)

— GPU implementation of ConvNets

* Train bigger, deeper networks for longer than before

— RelU

* Not new in AlexNet, but a necessary design choice to avoid
vanishing gradients in deep network

* Hence “deep learning”:

— a rebranding of formerly unfashionable neural networks

