CSCI 497P/597P: Computer Vision

Neural Networks: Activation Functions Gradient Descent in Neural Networks (Backpropagation)

Readings

with a great deal more detail...

- http://cs231n.github.io/optimization-2/
- http://cs231n.github.io/neural-networks-1/
- http://cs231n.github.io/neural-networks-2/
- http://cs231n.github.io/neural-networks-3/

Neural Networks: Nonlinear Classifiers built from Linear Classifiers

Neural networks: without the brain stuff

(**Before**) Linear score function:
$$f=Wx$$
(**Now**) 2-layer Neural Network $f=W_2\max(0,W_1x)$ or 3-layer Neural Network $f=W_3\max(0,W_2\max(0,W_1x))$ $f=W_3\max(0,W_2\max(0,W_1x))$

Neural Networks

Neural Network

Neural networks: without the brain stuff

(**Before**) Linear score function:
$$f=Wx$$
(**Now**) 2-layer Neural Network $f=W_2\max(0,W_1x)$ or 3-layer Neural Network $f=W_3\max(0,W_2\max(0,W_1x))$ $f=W_3\max(0,W_2\max(0,W_1x))$

$$f(x, W) = Wx$$

$$f(x, W) = Wx$$

A linear classifier can only do so well...

$$f(x, W) = Wx$$

$$f(x, W_1, W_2) = W_1(W_2x)$$

Let's try stacking two linear classifiers together

$$f(x, W) = Wx$$

$$f(x, W_1, W_2) = (W_1 (W_2)x)$$

Uh oh – linear functions compose to linear functions.

$$f(x, W) = Wx$$
$$f(x, W_1, W_2) = W_1(W_2x)$$

$$W \leftarrow W_1 W_2$$
$$f(x, W) = Wx$$

Uh oh – linear functions compose to linear functions.

Nonlinearities prevent the composed linear functions from collapsing into a single one.

Neural Networks

Neural Network

Neural Networks

Neural Network

Neural Networks: Nonlinear Classifiers built from Linear Classifiers

(Stochastic) Gradient Descent: In Practice

```
# Vanilla Minibatch Gradient Descent
                data_batch = sample_training_data(data, 256) # sample 256 examples
weights_grad = evaluate gradient(loss fun data being data be
while True:
                  weights += - step size * weights grad # perform parameter update
                      Vie -5. Disond.
                                                                                    = f(W2,9(W,X
```

Backpropagation in Pytorch

- Your deep learning framework knows how to differentiate anything you might want to do.
- Exmple, in pytorch:
 - Your classifier inherits from torch.nn.Module
 - You implement its forward method
 - Torch generates a backward() method for you!
 - Training looks like this (pseudocode)
 output = classifier(data) # uses W, b
 loss = loss_function(output, true_labels)
 loss.backward() # (backprop magic here!)
 dW = w.grad
 db = b.grad
 W -= step_size * dW
 b -= step size * db

Backpropagation in Pytorch

Example, in pytorch (pseudocode):

```
output = classifier(data, W, b) # uses W, b
loss = loss_function(output, true_labels)
loss.backward() # (backprop magic here!)
dW = w.grad
db = b.grad
W -= step_size * dW
b -= step_size * db
```

• In practice, an Optimizer performs the updates instead:

Demo

- A hand-rolled linear classifier in pytorch.
- Takeaways:
 - compute loss = my_loss_fn(X, y, W, ...)
 - call loss.backward()
 - W.grad now contains the gradient of the loss with respect to W!

Two important pieces

• The feature extractor (ϕ)

• The classifier (h)

The last layer of (most) neural networks are linear classifiers

Key: perform enough processing so that by the time you get to the end of the network, the classes are linearly separable

The last layer of (most) neural networks are linear classifiers

Input Pixels Perform everything with a big neural network, trained end-to-end

The network is the feature extractor and the classifier.

A Linear Classifier

- y = Wx + b
- Every row of y corresponds to a hyperplane in x space

Linear Classifier: Parameter Count

 How many parameters does a linear function have? Suppose:

The linear function for images

Linear Classifier: Parameter Count

- How many parameters does a linear function have? Suppose:
 - # pixels = 256*256 = 65536 = 2^{16}
 - # classes = $1024 = 2^{10}$
- (2²⁶) parameters for a one-layer network on a tiny image.
- More layers means more parameters:
 - more computation
 - difficult to train
- Can we make better use of parameters?

Idea 1: local connectivity

Pixels only related to nearby pixels

Idea 2: Translation invariance

Pixels only related to nearby pixels

 Weights should not depend on the location of the neighborhood

Linear function + translation invariance = convolution

Local connectivity determines kernel size

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

32x32x3 image -> preserve spatial structure

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Convolution Layer

consider a second, green filter

Convolution as a general layer

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

Convolutional Neural Networks

• Convolution layers interspersed with activation functions.

Convolution as a primitive

Convolution as a feature detector

- score at (x,y) = dot product (filter, image patch at (x,y))
- Response represents similarity between filter and image patch

Kernel sizes and padding

Kernel sizes and padding

 Valid convolution decreases size by (k-1)/2 on each side

- Pad by (k-1)/2, or

 Allow spatial dimensions to shrink.

torch.nn.Conv2d

torch.nn.Conv2d(in channels, # channels in input feature map out channels, # filters to learn (== channels in the output) → kernel size, # size of each filter kernel stride=1, # move this many pixels when sliding filter → padding=0, # pad the input by this much (can be tuple) dilation=1, groups=1, # add a bias after convolution? biás=True Ì

Convolutional Layers

- Feature maps ("hidden layers", "activations", etc.) are no longer column vectors but 3D blobs:
 - Input # 256x256x3
 - Conv2d(in: 3, out:10) # 255x255x10
 - Conv2d(in: 10, out:20) # 255x255x20
 - **—** ...

Convolutional Layers

- Feature maps ("hidden layers", "activations", etc.) are no longer column vectors but 3D blobs:
 - Input # 256x256x3
 - Conv2d(in: 3, out:10) # 255x255x10
 - Conv2d(in: 10, out:20) # 254x254x20
 - ... this could get large quickly, and we ultimately need a vector that we can apply a linear classifier to.

Downsampling, Subsampling, Pooling

- Reducing spatial dimensions:
 - Subsample (e.g. throw away every other pixel)
 - Average pooling
 - Max pooling (most commonly used)

Convolutional Networks

• Feature maps ("hidden layers", "activations", etc.) are no longer column vectors but 3D blobs:

```
    Input # 256x256x3
    Conv2d(in: 3, out:10) # 255x255x10
    Subsample (2x2)
    Conv2d(in: 10, out:20) # 127x127x20
```

- **–** ...
- Conv/subsample until 1x1xC
- Or at some point, just unravel HxWxC into HWCx1 vector.
- Then apply a linear classifier!

CNNs before they were cool: LeNet-5 [LeCun et al., 1998]

Today's architectures still look a lot like this!

What happened?

- What changed?
 - Bigger training data: ImageNet has 14 million images and 20,000 categories.
 - (performance numbers are on a 1000-category subset)
 - GPU implementation of ConvNets
 - Train bigger, deeper networks for longer than before
 - ReLU
 - Not new in AlexNet, but a necessary design choice to avoid vanishing gradients in deep network
- Hence "deep learning":
 - a rebranding of formerly unfashionable neural networks