CSCI 497P/597P: Computer Vision

Linear Classifiers
(Stochastic) Gradient Descent

Readings

with a great deal more detail...

nttps://cs231n.github.io/linear-classify/

nttp://cs231n.github.io/optimization-1/

nttp://cs231n.github.io/optimization-2/

Goals

Know the benefits and limitations of linear
classifiers over KNN.

Understand the mathematical formulation of
a binary and multiclass linear classifier.

Understand how to train a classifier by
minimizing a loss function using gradient
descent.

Understand the intuition behind using
Stochastic (Minibatch) Gradient Descent.

KNN: Bottom Line

* Fast to train but slow to predict

* Distance metrics don’t behave well for high-
dimensional image vectors

Classifying Images: Let’s simplify

* Nearest Neighbor Classifier
the data NN classifier h

Linear classifiers

* Finding nearest neighbor is slow.

* Basicidea:
— Training time: find a line that separates the data

— Testing time: which side of the line is @(x) on?
+Fast to compute
-Restrictive — data must be linearly separable h

Linear classifiers

* A linear classifier
corresponds to a
hyperplane

— Equivalent of a line in
high-dimensional space

— Equation:wlx +b =0

 Points on the same

side are the same class

d- s 4 - dims
Ly
>

GxrhbytC =0 Ca

Does this ever work?

* |t’s easier to be
linearly separable in
high-dimensional
space.

e But simple linear

classifiers still don’t
work on most

interesting data.

Some history from the
Antedeepluvian Era

 Example pipeline from days of yore:
— Detect corners and extract SIFT features
— Collect features into a “bag of features”

— (if you’re feeling fancy) maintain some spatial
information

— Somehow convert feature bag to fixed size
— Apply linear classifier

* Key idea:s designed by hand, while%) is
o

learned f data.

Some history of the
Antedeepluvian Era

e Key idea:@s designed by hand, while h is
learned from data.

* Nowadays: learn both from data - “end-to-
end”: image goes in, label comes out.
— Enabled only recently by bigger

* labeled datasets
e compute power (GPUs)

Linear classifiers

L

e Equation:w’x+b =0
s 3

 Points on the same side
are the same class

We have a classifier

l
h(x) = WT®+ b gives a

score

Score negative: red
Score positive: blue

Does it solve the
runtime issues of KNN?

Multiclass Linear Classifiers:
Stack multiple w' into a matrix.

stretch pixels into single column

\

02 | -05| 01| 20 56 1.1 =) 968 | cat score

1581 30 Zmmo) 231 (39 ng 437.9 | dog score

—————— g
e - - :
npeifimage 0 0251002 0.3 24 1.2 61.95 ship score
L

T

X
A

¥

Multiclass Linear Classifier:
Geometric Interpretation

§ =
el
»
é:\)

car classifier

airplane classifier "

deer classifier

The Bias Trick ZU&W

The Bias Trick

 Fold b into an additional dimension of w
 Add a fixed 1 to all feature vectors.

* Now, h(x) = w'x

We have a classifier
L \

h(x) = w' x gives a score

Score negative: red
Score positive: blue

Where does w come
from?

How do we find a good W?

* Step 1: Fora given W,
decide on a Loss
Function: a measure of
how much we dislike
the line.

* Step 2: use optimization
to find the W that

minimizes the loss
function.

Loss Functions

e Step 1: For a given W, decide on a
Loss Function: a measure of how much we
dislike this classifier.

e Step 2: use optimization to find the W that
minimizes the loss function.
— Linear regression: solvable in closed form
— Useful loss functions in vision/ML: no closed form.

m;\(«\l[//}x -/o“ &
i [LAR)

ST 1 hll= 1

Loss Functions

e Step 1: For a given W, decide on a

Loss Function: a measure of how much we
dislike this classifier.

 Loss Function intuition:

— loss should be large if many data points are
misclassified

— loss should be small (0?) if all data is classified
correctly.

Loss Functions — SVM Loss

* SVM Loss:

— Insists that data points are not just correctly
classified, but a certain distance from the
hyperplane:

— L, =max(0, x;, 1- yi(w' x; + b)

x; = i'th data point
y; = i'th data point’s true label:
-1 if red

+1 if green

\

lebol of X!
* | fﬁ la(ue,

- P ed

Loss Functions — SVM Loss

e SVM Loss:

— Insists that data points are not just correctly
classified, but a certain distance from the
hyperplane:

— L= max(0 x;, 1- yi(w' x; + b)

x; = i'th data point
y; = i’th data point’s true label:
-1 if red

+1 if green

— L(W, b) = Zi Li

— Loss for a given line is the sum
of the loss for all datapoints

Softmax Classifier / Cross-Entropy
Loss: Intuition

ives us a vector of scores, one per class
each row of W is a classifier)

Wouldn’t it be nice to interpret these as

@blhtl% o o
g »JM%B Zﬁ

Softmax Classifier / Cross-Entropy
Loss: Intuition

WT x gives us a vector of scores, one per class (each
row of W is a classifier)

Wouldn’t it be nice to interpret these as probabilities?
But they’re not...

-can be <0

-don’tallsumto 1

But we can treat them as unnormalized log
probabilities.

Softmax Classifier / Cross-Entropy Loss

ﬁr
f=WT x gives us a vector of scores, one per £
class (each row of W is a classifier) % Sum o/

5

Softmax normalization: Exponentiate to get all
positive values, then normalize to sum to 1:

p(x; is class k)

Softmax Classifier / Cross-Entropy Loss

f=WTx gives us a vector of scores, one per
class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all
positive values, then normalize to sum to 1:

p(x; is class k) =

Cross-entropy loss: measure KL divergence

between the predicted distribution and the
true distribution:

Cross-Entropy Loss: Intuition

1
KL
@@g?’_ﬂ“‘)

4 AN
Wé; q //l Fre ditrp
o’x’%&m

Taking stock

 We have:
—\d\= unravel(rgb2gray(img)), a feature extractor

-

— h(x) =iWT}x, a multiclass linear classifier

(—\—

N
— L= Z L; ~aloss function
i=0

L, =—1 el
i — — 108 ZJ ij
e We don’t have:

— a way to find a W that results in a small L.

Minimizing the Loss

* Use optimization to find the W that minimizes
the loss function.

— Linear regression: solvable in closed form
— Most of the time: no closed form.

Optimization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

How do we find a W that minimizes L?
e Bad idea: Random search.

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.000]
loss = L(X train, Y_train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

How’d that go for you?

Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols)
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~95%)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Finding a W that minimizes L

* Simple idea: walk downhill.

Slide: Fei-Fei Li. Justin Johnson. & Serena Yeung

Gradient Descent: Generally

* Gradient of the loss
function with respect to w; I
the weights tells us how to
change the weights to
improve the loss.

Gradient Descent: Intuition

The effect of Step Size

Too large: unstable Too small: slow convergence

Reality isn’t quite so pretty

e Loss functions are rarely convex. Finding a
local minimum is the best you can do.

Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # '

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Gradient Descent: Intuition

Gradient Descent: Demo

e http://vision.stanford.edu/teaching/cs231n-
demos/linear-classify/

— select “Softmax” radio button at the bottom

Stochastic Gradient Descent

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad

* L(X,Y; W) depends on
— All data points x;..x,
— Ground truth labels y;..y,
— Weights W
* Very expensive to evaluate if you have a lot of data.

Stochastic Gradient Descent

* |dea: consider only a few data points at a
time.

* Loss is now computed using only a small batch
(minibatch) of data points.

 Update weights the same way using the
gradient of L wrt the weights.

Stochastic Gradient Descent: Intuition

Taking stock

e We have:
— ¢ = unravel(rgb2gray(img)), a feature extractor

— h(x) = WT x, a multiclass linear classifier

N
— L= Z L; _aloss function
i=0

elvi
L; = —log Zj 7

— A way too adjust W until we can’t make L any
smaller.

