CSCI 497P/597P: Computer Vision

Linear Classifiers (Stochastic) Gradient Descent

Readings

with a great deal more detail...

- https://cs231n.github.io/linear-classify/
- http://cs231n.github.io/optimization-1/
- http://cs231n.github.io/optimization-2/

Goals

- Know the benefits and limitations of linear classifiers over KNN.
- Understand the mathematical formulation of a binary and multiclass linear classifier.
- Understand how to train a classifier by minimizing a loss function using gradient descent.
- Understand the intuition behind using Stochastic (Minibatch) Gradient Descent.

KNN: Bottom Line

- Fast to train but slow to predict
- Distance metrics don't behave well for highdimensional image vectors

Classifying Images: Let's simplify

Nearest Neighbor Classifier

Linear classifiers

- Finding nearest neighbor is slow.
- Basic idea:
 - Training time: find a line that separates the data
 - Testing time: which side of the line is $\phi(x)$ on?
 - +Fast to compute

Linear classifiers

- A linear classifier corresponds to a hyperplane
 - Equivalent of a line in high-dimensional space
 - Equation: $w^T x + b = 0$
- Points on the same side are the same class.

Does this ever work?

- It's easier to be linearly separable in high-dimensional space.
- But simple linear classifiers still don't work on most interesting data.

Some history from the Antedeepluvian Era

- Example pipeline from days of yore:
 - Detect corners and extract SIFT features
 - Collect features into a "bag of features"
 - (if you're feeling fancy) maintain some spatial information
 - Somehow convert feature bag to fixed size
 - Apply **linear** classifier
- Key idea: (ϕ) is designed by hand, while h is learned from data.

Some history of the Antedeepluvian Era

• Key idea: ϕ is designed by hand, while h is learned from data.

- Nowadays: learn both from data "end-toend": image goes in, label comes out.
 - Enabled only recently by bigger
 - labeled datasets
 - compute power (GPUs)

Linear classifiers

• Equation: $\psi^T \dot{x} + \dot{b} = 0$

 Points on the same side are the same class

We have a classifier

• $h(x) = w^T (x) + b$ gives a score

- Score negative: red
- Score positive: blue

 Does it solve the runtime issues of KNN?

Multiclass Linear Classifiers: Stack multiple w^T into a matrix.

Multiclass Linear Classifier: Geometric Interpretation

The Bias Trick

- Fold b into an additional dimension of w
- Add a fixed 1 to all feature vectors.

• Now, $h(x) = w^T x$

We have a classifier

•
$$h(x) = w^T x$$
 gives a score

- Score negative: red
- Score positive: blue

• Where does w come from?

How do we find a good W?

- Step 1: For a given W, decide on a Loss
 Function: a measure of how much we dislike the line.
- Step 2: use optimization to find the W that minimizes the loss function.

Loss Functions

- Step 1: For a given W, decide on a
 Loss Function: a measure of how much we
 dislike this classifier.
- Step 2: use **optimization** to find the W that *minimizes* the loss function.
 - Linear regression: solvable in closed form
 - Useful loss functions in vision/ML: no closed form.

Loss Functions

Step 1: For a given W, decide on a
 Loss Function: a measure of how much we dislike this classifier.

- Loss Function intuition:
 - loss should be large if many data points are misclassified
 - loss should be small (0?) if all data is classified correctly.

Loss function: Ideas

Loss Functions – SVM Loss

SVM Loss:

- Insists that data points are not just correctly classified, but a certain distance from the hyperplane:
- $L_i = max(0, x_i, 1- y_i(w^T x_i + b)$

x_i = i'th data point
 y_i = i'th data point's true label:

 -1 if red
 +1 if green

L(2) 5/1 Wordn no penultx 40 l; = Max(0,1-Wx; · yi) label of x: +1 if blue ned

Loss Functions – SVM Loss

• SVM Loss:

 Insists that data points are not just correctly classified, but a certain distance from the hyperplane:

$$- L_i = max(0 x_i, 1- y_i(w^T x_i + b)$$

```
x<sub>i</sub> = i'th data point
y<sub>i</sub> = i'th data point's true label:
    -1 if red
    +1 if green
```

- $-L(w, b) = \Sigma_i L_i$
- Loss for a given line is the sum of the loss for all datapoints

Softmax Classifier / Cross-Entropy Loss: Intuition

W^T x gives us a vector of scores, one per class (each row of W is a classifier)

Wouldn't it be nice to interpret these as

probabilities?

Softmax Classifier / Cross-Entropy Loss: Intuition

W^T x gives us a vector of scores, one per class (each row of W is a classifier)

Wouldn't it be nice to interpret these as probabilities? But they're not...

- can be < 0
- don't all sum to 1

But we can treat them as unnormalized log probabilities.

Softmax Classifier / Cross-Entropy Loss

 $f = W^T$ x gives us a vector of scores, one per class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all

positive values, then normalize to sum to 1: $p(x_i \text{ is class } k)$

Softmax Classifier / Cross-Entropy Loss

 $f = W^T x$ gives us a vector of scores, one per class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all positive values, then normalize to sum to 1:

$$p(x_i \text{ is class } k) = \frac{e^{f_k}}{\sum_{i} e^{f}}$$

Cross-entropy loss: measure *KL divergence* between the **predicted** distribution and the **true** distribution:

$$\sum_{j} e^{f_{y_{i}}}$$

Cross-Entropy Loss: Intuition

Taking stock

- We have:
 - $-\phi$ = unravel(rgb2gray(img)), a feature extractor $-h(x) = W^T x$, a multiclass linear classifier

- L= $\sum L_i$, a loss function

$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_{j} e^{f_j}}\right)$$

- We don't have:
 - a way to find a W that results in a small L.

Minimizing the Loss

- Use **optimization** to find the W that *minimizes* the loss function.
 - Linear regression: solvable in closed form
 - Most of the time: no closed form.

Optimization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

How do we find a W that minimizes L?

Bad idea: Random search.

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
  W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
  loss = L(X train, Y train, W) # get the loss over the entire training set
  if loss < bestloss: # keep track of the best solution
    bestloss = loss
    bestW = W
  print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
                                                       Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
```

How'd that go for you?

Lets see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad! (SOTA is ~95%)

Finding a W that minimizes L

• Simple idea: walk downhill.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Gradient Descent: Generally

 Gradient of the loss function with respect to the weights tells us how to change the weights to improve the loss.

 W_1

Gradient Descent: Intuition

The effect of Step Size

Too large: unstable Too small: slow convergence

Reality isn't quite so pretty

 Loss functions are rarely convex. Finding a local minimum is the best you can do.

Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Gradient Descent: Intuition

Gradient Descent: Demo

- http://vision.stanford.edu/teaching/cs231ndemos/linear-classify/
 - select "Softmax" radio button at the bottom

Stochastic Gradient Descent

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

- L(X, Y; W) depends on
 - All data points $x_1..x_n$
 - Ground truth labels y₁..y_n
 - Weights W
- Very expensive to evaluate if you have a lot of data.

Stochastic Gradient Descent

- Idea: consider only a few data points at a time.
- Loss is now computed using only a small batch (minibatch) of data points.
- Update weights the same way using the gradient of L wrt the weights.

Stochastic Gradient Descent: Intuition

Taking stock

- We have:
 - $\phi = unravel(rgb2gray(img))$, a feature extractor

 $-h(x) = W^T x$, a multiclass linear classifier

– L =
$$\sum_{i=0}^{N} L_i$$
 , a loss function $L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_{j} e^{f_j}}\right)$

 A way too adjust W until we can't make L any smaller.