CSCI 497P/597P: Computer Vision

Scott Wehrwein

K Nearest Neighbor Classifier
Linear Classifiers




Reading

* http://cs231n.github.io/linear-classify/



http://cs231n.github.io/linear-classify/

Announcements

* No class tomorrow
* HW4 due Friday
* P3 due Monday



Goals

Understand the standard ML pipeline for image
classification problems:

— Represent images as feature vectors
— Learn a classifier function from labeled data
— Classify novel images using the learned classifier

Understand KNN classifier and why it doesn’t work so well
on images.

Understand the importance of splitting data into
train/val/test sets when developing algorithms and tuning
hyperparameters.

Understand the benefits and limitations of linear classifiers
over KNN.

Understand the mathematical formulation of a binary and
multiclass linear classifier.



Image classification - Multilabel
classification

nis a dog? Yes
nis furry? Yes
nis sitting down? Yes




How are we going to solve this?

An image classifier

def classify_image(image):

return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Attempts have been made

Find edges Find corners

VR

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

def train(images, labels):
# Machine learning!
return model

def predict(model, test_images):

# Use model to predict labels
return test_labels

Example training set

alrplane

bird
cat

deer

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Representing Images

* We have images; ML works on vectors.

* To do machine learning, we need a function
that takes an image and converts it into a
vector.

* Given an image, use ¢ to get a vector
representing a point in high dimensional
space



Classifying Images

* Given an image, use ¢ to get a vector and
plot it as a point in high dimensional space

* Then, use a classifier function to map
feature vectors to class labels:

+ h( T

) — Hdog”



Classifying Images: Pipeline

1. Represent the image in some feature space

2. Classify the image based on its feature

representation.

+ h( T

) — Hdog”



Two important pieces

* The feature extractor (¢)

* The classifier (h)



Let’s make the (almost)
simplest possible ¢

* Represent an image as a vector in R?

e Step 1: convert image to gray-scale and
resize to fixed size

I



Feature space: representing images as
vectors

e Step 2: Flatten 2D array into 1D vector

—




Let’s make the simplest possible h

° h(X) — Ildog”



Let’s make the simplest possible h

* h(x) = “dog”
* Okay, let’s get a little less simple than that.



Let’s make a very simple h

h(x) = “dog”
Okay, let’s get a little less simple than that.

I’ve never seen x before, but I've seen a bunch of
other things.

h(x) = the label of the most similar thing to x of all
the things I've seen.

— assumption: similar data points have similar labels



A Simple h: Nearest Neighbor Classifier

the data NN classifier
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def train(images, labels): Memorize all

# Machine learning!
return model

data and labels

def predict(model, test_images): Predict the label
# Use model to predict labels ———_p of the most similar

return test_labels . . .
training image

Ficures: Fei-Fei Li, Justin Johnson, & Serena Yeung



Demo:
Nearest Neighbor on MNIST
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Slide: Fei-Fei Li, Justin Johnso



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeun



An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

 What do we mean by “nearest” anyway?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



K-Nearest Neighbors: Distance Metric
L1 (Manhattan) distance L2 (Euclidean) distance

d(I;, ) Z|I” hed alE ) = \’Z (1P — I?)?

dh
O W

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung




K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

di(h,B) = |1} - If| ht) = [ -B)

4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Demo

e http://vision.stanford.edu/teaching/cs231n-demos/knn/



http://vision.stanford.edu/teaching/cs231n-demos/knn/

Simple Image Classification Algorithm

. ¢ . Convert to grayscale and unravel into a
vector.

* h: Classify using majority label of the k nearest
neighbors according to a distance metric d.

* kand d are hyperparameters. How do we know
what to choose?

— Depends on the problem

— Usually no principled way to choose — trial and error is
often the only way.



Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

train

test

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train test
Idea #3: Split data into train, val, and test; choose Better!
hyperparameters on val and evaluate on test '
train validation test

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds,
try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung




Nearest Neighbor Classifier: Summary

the data NN classifier h
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k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original Boxed Shifted Tinted

(all 3 images have same L2 distance to the one on the left)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



k-Nearest Neighbor on images never used.

Dimensions = 3

- Curse of dimensionality Points = 43
Dimensions = 2 OO OO OO
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KNN: Bottom Line

* Fast to train but slow to predict

e Distance metrics don’t behave well for high-
dimensional image vectors



Classifying Images: Let’s simplify

* Nearest Neighbor Classifier
the data NN classifier h




Linear classifiers

* Finding nearest neighbor is slow.

* Basic idea:
— Training time: find a line that separates the data

— Testing time: which side of the line is @®(x) on?
+Fast to compute
-Restrictive — data must be linearly separable h




Linear classifiers

* A linear classifier
corresponds to a

hyperplane
— Equivalent of a line in e
high-dimensional space A
. ,g,r,;‘z;ff
— Equation: wix +b =0 Eo

e Points on the same

side are the same class




Does this ever work?

* |t's easier to be
inearly separable in
nigh-dimensional
space.

* But simple linear
classifiers still don’t
work on most

interesting data.



Some history from the
Antedeepluvian Era

 Example pipeline from days of yore:
— Detect corners and extract SIFT features
— Collect features into a “bag of features”

— (if you're feeling fancy) maintain some spatial
information

— Somehow convert feature bag to fixed size
— Apply linear classifier

e Key idea: ¢ is designed by hand, while h is
learned from data.



Some history of the
Antedeepluvian Era

e Key idea: ¢ is designed by hand, while h is
learned from data.

* Nowadays: learn both from data - “end-to-
end”: image goes in, label comes out.
— Enabled only recently by bigger

* labeled datasets
e compute power (GPUs)



Linear classifiers

e Equation:wlix+b =0

 Points on the same side
are the same class




We have a classifier

h(x) =w' x + b gives a
score

Score negative: red
Score positive: blue

Does it solve the
runtime issues of KNN?




stretch pixels into single column

input image

i

Multiclass Linear Classifiers:
Stack multiple w' into a matrix.
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Multiclass Linear Classifier:

Geometric I\r‘wterpretation

car classifier

deer classifier




The Bias Trick



The Bias Trick

 Fold b into an additional dimension of w
e Add a fixed 1 to all feature vectors.

* Now, h(x) =w'x



We have a classifier

h(x) = w' x gives a score

Score negative: red
Score positive: blue

Where does w come
from?




How do we find a good W?

* Step 1: Fora given W,
decide on a Loss
Function: a measure of
how much we dislike
the line.

* Step 2: use optimization
to find the W that
minimizes the loss
function.




Loss Functions

e Step 1: For a given W, decide on a
Loss Function: a measure of how much we
dislike this classifier.

e Step 2: use optimization to find the W that
minimizes the loss function.

— Linear regression: solvable in closed form
— Useful loss functions in vision: no closed form.



Loss Functions

e Step 1: For a given W, decide on a

Loss Function: a measure of how much we
dislike this classifier.

* Loss Function intuition:

— loss should be large if many data points are
misclassified

— loss should be small (07?) if all data is classified
correctly.



Loss function: Ideas



Softmax Classifier / Cross-Entropy
Loss: Intuition

W x gives us a vector of scores, one per class
(each row of W is a classifier)

Wouldn’t it be nice to interpret these as
probabilities?



Softmax Classifier / Cross-Entropy
Loss: Intuition

WT x gives us a vector of scores, one per class (each
row of W is a classifier)

Wouldn’t it be nice to interpret these as probabilities?
But they’re not...

-can be <0

-don’tall sumto 1

But we can treat them as unnormalized log
probabilities.



Softmax Classifier / Cross-Entropy Loss

f=WTx gives us a vector of scores, one per
class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all
positive values, then normalize to sum to 1:

p(x; is class k) =

Z] efj



Softmax Classifier / Cross-Entropy Loss

f=WTx gives us a vector of scores, one per
class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all
positive values, then normalize to sum to 1:

efk
p(x; is class k) =

Z] efj

Cross-entropy loss: measure KL divergence
between the predicted distribution and the
true distribution:

nyi

Z] efj

Li = — 10g



Cross-Entropy Loss: Intuition



Taking stock

* We have:
— ¢ = unravel(rgb2gray(img)), a feature extractor

— h(x) = WT x, a multiclass linear classifier

— L= , a loss function

efyi
Li = — log Z] efj




Taking stock

* We have:
— ¢ = unravel(rgb2gray(img)), a feature extractor

— h(x) = WT x, a multiclass linear classifier
— L= , a loss function

L 1 el
i — — 108 Z] efj
e We don’t have:

— a way to find a W that results in a small L.




Loss Functions

e Step 1: For a given W, decide on a
Loss Function: a measure of how much we
dislike this classifier.

e Step 2: use optimization to find the W that
minimizes the loss function.

— Linear regression: solvable in closed form
— Most of the time: no closed form.



Optimization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How do we find a W that minimizes L?
e Bad idea: Random search.

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y _train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How’d that go for you?

Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols)
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~95%)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Finding a W that minimizes L

e A better idea: walk downhill.

Slide: Fei-Feij Li. Jusn Johnson. & Serena Yeung



Gradient Descent: Generally

* Gradient of the loss
function with respect to w; [
the weights tells us how to
change the weights to
improve the loss.




Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # [

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Gradient Descent: Intuition



Gradient Descent: Intuition




Gradient Descent: Demo

e http://vision.stanford.edu/teaching/cs231n-
demos/linear-classify/

— select “Softmax” radio button at the bottom


http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Gradient Descent: Generally

* Gradient of the loss
function with respect to w. I
the weights tells us how to
change the weights to
improve the loss.

e L(X; W) depends on
— All data points x;..x,
— Very expensive to evaluate



Stochastic Gradient Descent

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad

e L(X; W) depends on Ll
— All data points x;..x,
— Weights W

* Very expensive to evaluate if you have a lot of
data.



Stochastic Gradient Descent

* |dea: consider only a few data points at a
time.

* Loss is now computed using only a small batch
(minibatch) of data points.

* Update weights the same way using the
gradient of L wrt the weights.



Stochastic Gradient Descent: Intuition




