K Nearest Neighbor Classifier
Linear Classifiers
Reading

Announcements

• No class tomorrow
• HW4 due Friday
• P3 due Monday
Goals

• Understand the standard ML pipeline for image classification problems:
 – Represent images as feature vectors
 – Learn a classifier function from labeled data
 – Classify novel images using the learned classifier
• Understand KNN classifier and why it doesn’t work so well on images.
• Understand the importance of splitting data into train/val/test sets when developing algorithms and tuning hyperparameters.
• Understand the benefits and limitations of linear classifiers over KNN.
• Understand the mathematical formulation of a binary and multiclass linear classifier.
Image classification - Multilabel classification

Is this a dog? Yes
Is this furry? Yes
Is this sitting down? Yes
How are we going to solve this?

An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.
Attempts have been made

Find edges

Find corners

?
Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```
Representing Images

• We have images; ML works on vectors.
• To do machine learning, we need a function that takes an image and converts it into a vector.

\[\phi () = \]

• Given an image, use \(\phi \) to get a vector representing a point in high dimensional space
Classifying Images

• Given an image, use ϕ to get a vector and plot it as a point in high dimensional space

$$\phi(\text{dog}) = \text{vector}$$

• Then, use a classifier function to map feature vectors to class labels:

$$h(\text{vector}) = \text{“dog”}$$
Classifying Images: Pipeline

1. Represent the image in some \textit{feature space}

\[
\phi \left(\begin{array} \end{array} \right) = \begin{array} \end{array}
\]

2. Classify the image based on its feature representation.

- \(h(\begin{array} \end{array}) = \text{"dog"} \)
Two important pieces

• The **feature extractor** (ϕ)

• The **classifier** (h)
Let’s make the (almost) simplest possible \(\phi \)

- Represent an image as a vector in \(\mathbb{R}^d \)
- Step 1: convert image to gray-scale and resize to fixed size
Feature space: representing images as vectors

- Step 2: Flatten 2D array into 1D vector
Let’s make the simplest possible h

- $h(x) = “\text{dog}”$
Let’s make the simplest possible h

- $h(x) = “dog”$
- Okay, let’s get a little less simple than that.
Let’s make a very simple h

- $h(x) = "dog"$
- Okay, let’s get a little less simple than that.

- I’ve never seen x before, but I’ve seen a bunch of other things.

- $h(x) = \text{the label of the most similar thing to } x \text{ of all the things I’ve seen.}$
 - assumption: \textit{similar} data points have \textit{similar} labels
A Simple h: Nearest Neighbor Classifier

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

- **Memorize all data and labels**
- **Predict the label of the most similar training image**

Figures: Fei-Fei Li, Justin Johnson, & Serena Yeung
Demo:
Nearest Neighbor on MNIST
An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take majority vote from K closest points

K = 1
K = 3
K = 5
An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

- What do we mean by “nearest” anyway?
K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

\[d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p| \]

L2 (Euclidean) distance

\[d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2} \]
K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

\[d_1(I_1, I_2) = \sum_p |I^p_1 - I^p_2| \]

L2 (Euclidean) distance

\[d_2(I_1, I_2) = \sqrt{\sum_p (I^p_1 - I^p_2)^2} \]
Demo

- http://vision.stanford.edu/teaching/cs231n-demos/knn/
Simple Image Classification Algorithm

• ϕ: Convert to grayscale and unravel into a vector.

• h: Classify using majority label of the k nearest neighbors according to a distance metric d.

• k and d are hyperparameters. How do we know what to choose?
 – Depends on the problem
 – Usually no principled way to choose – trial and error is often the only way.
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: $K = 1$ always works perfectly on training data

Your Dataset
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: $K = 1$ always works perfectly on training data

Idea #2: Split data into train and test, choose hyperparameters that work best on test data
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: $K = 1$ always works perfectly on training data

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

Idea #3: Split data into **train**, **val**, and **test**; choose hyperparameters on val and evaluate on test

Better!
Setting Hyperparameters

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

<table>
<thead>
<tr>
<th>fold 1</th>
<th>fold 2</th>
<th>fold 3</th>
<th>fold 4</th>
<th>fold 5</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>fold 1</td>
<td>fold 2</td>
<td>fold 3</td>
<td>fold 4</td>
<td>fold 5</td>
<td>test</td>
</tr>
<tr>
<td>fold 1</td>
<td>fold 2</td>
<td>fold 3</td>
<td>fold 4</td>
<td>fold 5</td>
<td>test</td>
</tr>
</tbody>
</table>

Useful for small datasets, but not used too frequently in deep learning
Nearest Neighbor Classifier: Summary
k-Nearest Neighbor on images *never used*.

- Very slow at test time
- Distance metrics on pixels are not informative

(All 3 images have same L2 distance to the one on the left)
k-Nearest Neighbor on images never used.

- Curse of dimensionality

Dimensions = 1
Points = 4

Dimensions = 2
Points = 4^2

Dimensions = 3
Points = 4^3
KNN: Bottom Line

• Fast to train but slow to predict
• Distance metrics don’t behave well for high-dimensional image vectors
Classifying Images: Let’s simplify

• Nearest Neighbor Classifier

• Linear Classifier
Linear classifiers

- Finding nearest neighbor is slow.
- Basic idea:
 - Training time: find a line that separates the data
 - Testing time: which side of the line is $\phi(x)$ on?
 + Fast to compute
 - Restrictive – data must be linearly separable
Linear classifiers

• A linear classifier corresponds to a hyperplane
 – Equivalent of a line in high-dimensional space
 – Equation: \(w^T x + b = 0 \)

• Points on the same side are the same class
Does this ever work?

- It’s easier to be linearly separable in high-dimensional space.
- But simple linear classifiers still don’t work on most interesting data.
Some history from the Antedeepluvian Era

• Example pipeline from days of yore:
 – Detect corners and extract SIFT features
 – Collect features into a “bag of features”
 – (if you’re feeling fancy) maintain some spatial information
 – Somehow convert feature bag to fixed size
 – Apply linear classifier

• Key idea: ϕ is designed by hand, while h is learned from data.
Some history of the Antedeepluvian Era

• Key idea: ϕ is designed by hand, while h is learned from data.

• Nowadays: learn both from data - “end-to-end”: image goes in, label comes out.
 – Enabled only recently by bigger
 • labeled datasets
 • compute power (GPUs)
Linear classifiers

- Equation: $w^T x + b = 0$
- Points on the same side are the same class
We have a classifier

- \(h(x) = w^T x + b \) gives a score
- Score negative: red
- Score positive: blue
- Does it solve the runtime issues of KNN?
Multiclass Linear Classifiers:
Stack multiple w^T into a matrix.

![Input image](image)

W

<table>
<thead>
<tr>
<th>0.2</th>
<th>-0.5</th>
<th>0.1</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.3</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0.25</td>
<td>0.2</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

b

<table>
<thead>
<tr>
<th>56</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>231</td>
<td>3.2</td>
</tr>
<tr>
<td>24</td>
<td>-1.2</td>
</tr>
</tbody>
</table>

x_i

$f(x_i; W, b)$

| -96.8 | 437.9 | 61.95 |

cat score
dog score
ship score
Multiclass Linear Classifier: Geometric Interpretation
The Bias Trick
The Bias Trick

- Fold b into an additional dimension of w
- Add a fixed 1 to all feature vectors.

- Now, $h(x) = w^T x$
We have a classifier

- \(h(x) = w^T x \) gives a score
- Score negative: red
- Score positive: blue
- Where does \(w \) come from?
How do we find a good W?

- Step 1: For a given W, decide on a **Loss Function**: a measure of how much we dislike the line.
- Step 2: use **optimization** to find the W that **minimizes** the loss function.
Loss Functions

• Step 1: For a given W, decide on a **Loss Function**: a measure of how much we dislike this classifier.

• Step 2: use **optimization** to find the W that **minimizes** the loss function.

 – Linear regression: solvable in closed form
 – Useful loss functions in vision: no closed form.
Loss Functions

• Step 1: For a given W, decide on a **Loss Function**: a measure of how much we dislike this classifier.

• Loss Function intuition:
 – loss should be large if many data points are misclassified
 – loss should be small (0?) if all data is classified correctly.
Loss function: Ideas
Softmax Classifier / Cross-Entropy Loss: Intuition

$W^T x$ gives us a vector of scores, one per class (each row of W is a classifier)

Wouldn’t it be nice to interpret these as probabilities?
Softmax Classifier / Cross-Entropy Loss: Intuition

$W^T x$ gives us a vector of scores, one per class (each row of W is a classifier)

Wouldn’t it be nice to interpret these as probabilities? But they’re not...

- can be < 0
- don’t all sum to 1

But we can treat them as **unnormalized log probabilities**.
Softmax Classifier / Cross-Entropy Loss

\[f = W^T x \] gives us a vector of scores, one per class (each row of \(W \) is a classifier)

Softmax normalization: Exponentiate to get all positive values, then normalize to sum to 1:

\[
p(x_i \text{ is class } k) = \frac{e^{f_k}}{\sum_j e^{f_j}}
\]
Softmax Classifier / Cross-Entropy Loss

\(f = W^T x \) gives us a vector of scores, one per class (each row of \(W \) is a classifier)

Softmax normalization: Exponentiate to get all positive values, then normalize to sum to 1:

\[
p(x_i \text{ is class } k) = \frac{e^{f_k}}{\sum_j e^{f_j}}
\]

Cross-entropy loss: measure KL divergence between the predicted distribution and the true distribution:

\[
L_i = - \log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}} \right)
\]
Cross-Entropy Loss: Intuition
Taking stock

- We have:
 - $\phi = \text{unravel}(\text{rgb2gray}(\text{img}))$, a feature extractor
 - $h(x) = W^T x$, a multiclass linear classifier
 - $L_i = -\log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}} \right)$, a loss function
Taking stock

• We have:
 – $\phi = \text{unravel(rgb2gray(img))}$, a feature extractor
 – $h(x) = W^T x$, a multiclass linear classifier
 – $L = \ldots$, a loss function

\[
L_i = -\log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}} \right)
\]

• We don’t have:
 – a way to find a W that results in a small L.
Loss Functions

• Step 1: For a given W, decide on a **Loss Function**: a measure of how much we dislike this classifier.

• Step 2: use **optimization** to find the W that **minimizes** the loss function.

 – Linear regression: solvable in closed form

 – Most of the time: no closed form.
Optimization
How do we find a W that minimizes L?

- Bad idea: Random search.

```python
# assume X_train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y_train are the labels (e.g. 1D array of 50,000)
# assume the function $L$ evaluates the loss function

bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
    W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
    loss = L(X_train, Y_train, W) # get the loss over the entire training set
    if loss < bestloss: # keep track of the best solution
        bestloss = loss
        bestW = W
    print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (truncated: continues for 1000 lines)
```

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
How’d that go for you?

Let’s see how well this works on the test set...

```python
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad! (SOTA is ~95%)
Finding a W that minimizes L

• A better idea: walk downhill.
Gradient Descent: Generally

• Gradient of the loss function with respect to the *weights* tells us how to change the weights to improve the loss.
Gradient Descent

Vanilla Gradient Descent

```python
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad  # perform parameter update
```
Gradient Descent: Intuition
Gradient Descent: Intuition
Gradient Descent: Demo

 – select “Softmax” radio button at the bottom
Gradient Descent: Generally

• Gradient of the loss function with respect to the *weights* tells us how to change the weights to improve the loss.

• $L(X; W)$ depends on
 - All data points $x_1..x_n$
 - Very expensive to evaluate
Stochastic Gradient Descent

Vanilla Minibatch Gradient Descent

```python
while True:
    data_batch = sample_training_data(data, 256)  # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad  # perform parameter update
```

- \(L(X; W) \) depends on
 - All data points \(x_1..x_n \)
 - Weights \(W \)
- Very expensive to evaluate if you have a lot of data.

\[
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)
\]
Stochastic Gradient Descent

• Idea: consider only a few data points at a time.
• Loss is now computed using only a small batch (minibatch) of data points.
• Update weights the same way using the gradient of L wrt the weights.
Stochastic Gradient Descent: Intuition