CSCI 497P/597P: Computer Vision

Scott Wehrwein

K Nearest Neighbor Classifier
Linear Classifiers

Reading

* http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/

Announcements

* No class tomorrow
* HW4 due Friday
* P3 due Monday

Goals

Understand the standard ML pipeline for image
classification problems:

— Represent images as feature vectors
— Learn a classifier function from labeled data
— Classify novel images using the learned classifier

Understand KNN classifier and why it doesn’t work so well
on images.

Understand the importance of splitting data into
train/val/test sets when developing algorithms and tuning
hyperparameters.

Understand the benefits and limitations of linear classifiers
over KNN.

Understand the mathematical formulation of a binary and
multiclass linear classifier.

Image classification - Multilabel
classification

nis a dog? Yes
nis furry? Yes
nis sitting down? Yes

How are we going to solve this?

An image classifier

def classify_image(image):

return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Attempts have been made

Find edges Find corners

VR

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

def train(images, labels):
Machine learning!
return model

def predict(model, test_images):

Use model to predict labels
return test_labels

Example training set

alrplane

bird
cat

deer

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Representing Images

* We have images; ML works on vectors.

* To do machine learning, we need a function
that takes an image and converts it into a
vector.

* Given an image, use ¢ to get a vector
representing a point in high dimensional
space

Classifying Images

* Given an image, use ¢ to get a vector and
plot it as a point in high dimensional space

* Then, use a classifier function to map
feature vectors to class labels:

+ h(T

) — Hdog”

Classifying Images: Pipeline

1. Represent the image in some feature space

2. Classify the image based on its feature

representation.

+ h(T

) — Hdog”

Two important pieces

* The feature extractor (¢)

* The classifier (h)

Let’s make the (almost)
simplest possible ¢

* Represent an image as a vector in R?

e Step 1: convert image to gray-scale and
resize to fixed size

I

Feature space: representing images as
vectors

e Step 2: Flatten 2D array into 1D vector

—

Let’s make the simplest possible h

° h(X) — Ildog”

Let’s make the simplest possible h

* h(x) = “dog”
* Okay, let’s get a little less simple than that.

Let’s make a very simple h

h(x) = “dog”
Okay, let’s get a little less simple than that.

I’ve never seen x before, but I've seen a bunch of
other things.

h(x) = the label of the most similar thing to x of all
the things I've seen.

— assumption: similar data points have similar labels

A Simple h: Nearest Neighbor Classifier

the data NN classifier
) ° .“
° :YQ..'.: o a Y Py e ® ® °° o.s °
: i w i, SR
- e @ e«?.‘o
® oo & e°w‘
s o. .8 B *ot® — ° °
L] ° ° °
(=) o :. fv. :
.o oe i Py °
def train(images, labels): Memorize all

Machine learning!
return model

data and labels

def predict(model, test_images): Predict the label
Use model to predict labels ———_p of the most similar

return test_labels . . .
training image

Ficures: Fei-Fei Li, Justin Johnson, & Serena Yeung

Demo:
Nearest Neighbor on MNIST

DN { B ENEEE
N
BEE\E s INHE
EE e NN
BERY B« iR
M « B N
AYEvEe ISEE
B H i
ECH S §SHER
NEE M5 TubE

t 11

R

X t 1111
L9 U 1] i)~

ng

na Yeu

n, & Sere

Slide: Fei-Fei Li, Justin Johnso

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeun

An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

 What do we mean by “nearest” anyway?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

K-Nearest Neighbors: Distance Metric
L1 (Manhattan) distance L2 (Euclidean) distance

d(I;,) Z|I” hed alE) = \’Z (1P — I?)?

dh
O W

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

di(h,B) = |1} - If| ht) = [-B)

4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Demo

e http://vision.stanford.edu/teaching/cs231n-demos/knn/

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Simple Image Classification Algorithm

. ¢ . Convert to grayscale and unravel into a
vector.

* h: Classify using majority label of the k nearest
neighbors according to a distance metric d.

* kand d are hyperparameters. How do we know
what to choose?

— Depends on the problem

— Usually no principled way to choose — trial and error is
often the only way.

Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

train

test

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train test
Idea #3: Split data into train, val, and test; choose Better!
hyperparameters on val and evaluate on test '
train validation test

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds,
try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Nearest Neighbor Classifier: Summary

the data NN classifier h

° ° .0
3 s L = e :.
) %0 o
o CSB ol °
o°° ®
°o° L]
e 0 ®o0 .’
e ¢
3 Ppdd
-
°

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original Boxed Shifted Tinted

(all 3 images have same L2 distance to the one on the left)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

k-Nearest Neighbor on images never used.

Dimensions = 3

- Curse of dimensionality Points = 43
Dimensions = 2 OO OO OO
Points = 42 o o o 0
O O o O o
Dimensions = 1 @)
Points = 4 c 6 o ©O O O O O OOO
@)
o O O O o o o o OO o
—-O0—0O0—0 O— @)
L L ©O 0 0 o Ooo
o O O O o o o o (@)

KNN: Bottom Line

* Fast to train but slow to predict

e Distance metrics don’t behave well for high-
dimensional image vectors

Classifying Images: Let’s simplify

* Nearest Neighbor Classifier
the data NN classifier h

Linear classifiers

* Finding nearest neighbor is slow.

* Basic idea:
— Training time: find a line that separates the data

— Testing time: which side of the line is @®(x) on?
+Fast to compute
-Restrictive — data must be linearly separable h

Linear classifiers

* A linear classifier
corresponds to a

hyperplane
— Equivalent of a line in e
high-dimensional space A
. ,g,r,;‘z;ff
— Equation: wix +b =0 Eo

e Points on the same

side are the same class

Does this ever work?

* |t's easier to be
inearly separable in
nigh-dimensional
space.

* But simple linear
classifiers still don’t
work on most

interesting data.

Some history from the
Antedeepluvian Era

 Example pipeline from days of yore:
— Detect corners and extract SIFT features
— Collect features into a “bag of features”

— (if you're feeling fancy) maintain some spatial
information

— Somehow convert feature bag to fixed size
— Apply linear classifier

e Key idea: ¢ is designed by hand, while h is
learned from data.

Some history of the
Antedeepluvian Era

e Key idea: ¢ is designed by hand, while h is
learned from data.

* Nowadays: learn both from data - “end-to-
end”: image goes in, label comes out.
— Enabled only recently by bigger

* labeled datasets
e compute power (GPUs)

Linear classifiers

e Equation:wlix+b =0

 Points on the same side
are the same class

We have a classifier

h(x) =w' x + b gives a
score

Score negative: red
Score positive: blue

Does it solve the
runtime issues of KNN?

stretch pixels into single column

input image

i

Multiclass Linear Classifiers:
Stack multiple w' into a matrix.

32

-96.8

02 |-05| 01| 20 5l6

15 | 1.3 | 2.1 | 0.0 231

wiva 0 (025(02| 03 24
|14 2

-1.2

437.9

61.95

f(zs; W, b)

cat score

dog score

ship score

Multiclass Linear Classifier:

Geometric I\r‘wterpretation

car classifier

deer classifier

The Bias Trick

The Bias Trick

 Fold b into an additional dimension of w
e Add a fixed 1 to all feature vectors.

* Now, h(x) =w'x

We have a classifier

h(x) = w' x gives a score

Score negative: red
Score positive: blue

Where does w come
from?

How do we find a good W?

* Step 1: Fora given W,
decide on a Loss
Function: a measure of
how much we dislike
the line.

* Step 2: use optimization
to find the W that
minimizes the loss
function.

Loss Functions

e Step 1: For a given W, decide on a
Loss Function: a measure of how much we
dislike this classifier.

e Step 2: use optimization to find the W that
minimizes the loss function.

— Linear regression: solvable in closed form
— Useful loss functions in vision: no closed form.

Loss Functions

e Step 1: For a given W, decide on a

Loss Function: a measure of how much we
dislike this classifier.

* Loss Function intuition:

— loss should be large if many data points are
misclassified

— loss should be small (07?) if all data is classified
correctly.

Loss function: Ideas

Softmax Classifier / Cross-Entropy
Loss: Intuition

W x gives us a vector of scores, one per class
(each row of W is a classifier)

Wouldn’t it be nice to interpret these as
probabilities?

Softmax Classifier / Cross-Entropy
Loss: Intuition

WT x gives us a vector of scores, one per class (each
row of W is a classifier)

Wouldn’t it be nice to interpret these as probabilities?
But they’re not...

-can be <0

-don’tall sumto 1

But we can treat them as unnormalized log
probabilities.

Softmax Classifier / Cross-Entropy Loss

f=WTx gives us a vector of scores, one per
class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all
positive values, then normalize to sum to 1:

p(x; is class k) =

Z] efj

Softmax Classifier / Cross-Entropy Loss

f=WTx gives us a vector of scores, one per
class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all
positive values, then normalize to sum to 1:

efk
p(x; is class k) =

Z] efj

Cross-entropy loss: measure KL divergence
between the predicted distribution and the
true distribution:

nyi

Z] efj

Li = — 10g

Cross-Entropy Loss: Intuition

Taking stock

* We have:
— ¢ = unravel(rgb2gray(img)), a feature extractor

— h(x) = WT x, a multiclass linear classifier

— L= , a loss function

efyi
Li = — log Z] efj

Taking stock

* We have:
— ¢ = unravel(rgb2gray(img)), a feature extractor

— h(x) = WT x, a multiclass linear classifier
— L= , a loss function

L 1 el
i — — 108 Z] efj
e We don’t have:

— a way to find a W that results in a small L.

Loss Functions

e Step 1: For a given W, decide on a
Loss Function: a measure of how much we
dislike this classifier.

e Step 2: use optimization to find the W that
minimizes the loss function.

— Linear regression: solvable in closed form
— Most of the time: no closed form.

Optimization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

How do we find a W that minimizes L?
e Bad idea: Random search.

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y _train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

How’d that go for you?

Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols)
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~95%)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Finding a W that minimizes L

e A better idea: walk downhill.

Slide: Fei-Feij Li. Jusn Johnson. & Serena Yeung

Gradient Descent: Generally

* Gradient of the loss
function with respect to w; [
the weights tells us how to
change the weights to
improve the loss.

Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad # [

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Gradient Descent: Intuition

Gradient Descent: Intuition

Gradient Descent: Demo

e http://vision.stanford.edu/teaching/cs231n-
demos/linear-classify/

— select “Softmax” radio button at the bottom

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Gradient Descent: Generally

* Gradient of the loss
function with respect to w. I
the weights tells us how to
change the weights to
improve the loss.

e L(X; W) depends on
— All data points x;..x,
— Very expensive to evaluate

Stochastic Gradient Descent

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad

e L(X; W) depends on Ll
— All data points x;..x,
— Weights W

* Very expensive to evaluate if you have a lot of
data.

Stochastic Gradient Descent

* |dea: consider only a few data points at a
time.

* Loss is now computed using only a small batch
(minibatch) of data points.

* Update weights the same way using the
gradient of L wrt the weights.

Stochastic Gradient Descent: Intuition

