CSCI 497P/597P: Computer Vision Scott Wehrwein

K Nearest Neighbor Classifier Linear Classifiers

Reading

<u>http://cs231n.github.io/linear-classify/</u>

Announcements

- No class tomorrow
- HW4 due Friday
- P3 due Monday

Goals

- Understand the standard ML pipeline for image classification problems:
 - Represent images as feature vectors
 - Learn a classifier function from labeled data
 - Classify novel images using the learned classifier
- Understand KNN classifier and why it doesn't work so well on images.
- Understand the importance of splitting data into train/val/test sets when developing algorithms and tuning hyperparameters.
- Understand the benefits and limitations of linear classifiers over KNN.
- Understand the mathematical formulation of a binary and multiclass linear classifier.

Image classification - Multilabel classification

Is this a dog? Yes Is this furry? Yes Is this sitting down? Yes

How are we going to solve this?

An image classifier

def classify_image(image):
 # Some magic here?
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

airplaneImage: Image: Imag

Example training set

Representing Images

- We have images; ML works on vectors.
- To do machine learning, we need a function that takes an image and converts it into a vector.

$$\phi$$
 () =

- Given an image, use ϕ to get a vector representing a point in high dimensional space

Classifying Images

• Given an image, use ϕ to get a vector and plot it as a point in high dimensional space

• Then, use a *classifier* function to map feature vectors to class labels:

Classifying Images: Pipeline

1. Represent the image in some *feature space*

2. Classify the image based on its feature representation.

Two important pieces

• The feature extractor (ϕ)

• The classifier (*h*)

Let's make the (almost) simplest possible ϕ

- Represent an image as a vector in \mathbb{R}^d
- Step 1: convert image to gray-scale and resize to fixed size

Feature space: representing images as vectors

• Step 2: Flatten 2D array into 1D vector

Let's make the simplest possible h

• h(x) = "dog"

Let's make the simplest possible h

- h(x) = "dog"
- Okay, let's get a little less simple than that.

Let's make a very simple h

- h(x) = "dog"
- Okay, let's get a little less simple than that.
- I've never seen x before, but I've seen a bunch of other things.
- h(x) = the label of the most similar thing to x of all the things I've seen.
 - assumption: **similar** data points have **similar** labels

A Simple *h*: Nearest Neighbor Classifier

the data

NN classifier

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Predict the label
 of the most similar training image

Demo: Nearest Neighbor on MNIST

An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

K = 1

K = 3

K = 5

An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

K = 1

K = 3

K = 5

• What do we mean by "nearest" anyway?

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance $d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p ig(I_1^p - I_2^pig)^2}$$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance $d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$

K = 1

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$

Demo

• http://vision.stanford.edu/teaching/cs231n-demos/knn/

Simple Image Classification Algorithm

- ϕ : Convert to grayscale and unravel into a vector.
- h: Classify using majority label of the k nearest neighbors according to a distance metric d.
- k and d are hyperparameters. How do we know what to choose?
 - Depends on the problem
 - Usually no principled way to choose trial and error is often the only way.

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train

test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset							
Idea #2: Split data into train and test, choose BAD: No idea how algorithr hyperparameters that work best on test data will perform on new data							
train		test					
Idea #3: Split data into train, val, and test; choose Better! hyperparameters on val and evaluate on test							
train	validation	test					

Your Dataset

Idea #4: Cross-Validation: Split data into folds,

try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Nearest Neighbor Classifier: Summary

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original image is CC0 public domain (all 3 images have same L2 distance to the one on the left)

k-Nearest Neighbor on images never used.

- Curse of dimensionality

Dimensions = 3 Points = 4^3

KNN: Bottom Line

- Fast to train but slow to predict
- Distance metrics don't behave well for highdimensional image vectors

Classifying Images: Let's simplify

Nearest Neighbor Classifier
 the data

NN classifier h

• Linear Classifier

Linear classifiers

- Finding nearest neighbor is slow.
- Basic idea:
 - Training time: find a line that separates the data
 - Testing time: which side of the line is $\phi(\mathbf{x})$ on? +Fast to compute
 - -Restrictive data must be linearly separable

Linear classifiers

- A linear classifier corresponds to a hyperplane
 - Equivalent of a line in high-dimensional space
 - Equation: $w^T x + b = 0$
- Points on the same side are the same class

Does this ever work?

- It's easier to be linearly separable in high-dimensional space.
- But simple linear classifiers still don't work on most interesting data.

Some history from the Ante**deep**luvian Era

- Example pipeline from days of yore:
 - Detect corners and extract SIFT features
 - Collect features into a "bag of features"
 - (if you're feeling fancy) maintain some spatial information
 - Somehow convert feature bag to fixed size
 - Apply linear classifier
- Key idea: ϕ is designed by hand, while h is learned from data.

Some history of the Ante**deep**luvian Era

• Key idea: ϕ is designed by hand, while *h* is learned from data.

- Nowadays: learn both from data "end-toend": image goes in, label comes out.
 - Enabled only recently by bigger
 - labeled datasets
 - compute power (GPUs)

Linear classifiers

- Equation: $w^T x + b = 0$
- Points on the same side are the same class

We have a classifier

h(x) = w^T x + b gives a score

- Score negative: red
- Score positive: blue

• Does it solve the runtime issues of KNN?

Multiclass Linear Classifiers: Stack multiple w^T into a matrix.

Multiclass Linear Classifier: Geometric Interpretation

The Bias Trick

The Bias Trick

- Fold b into an additional dimension of w
- Add a fixed 1 to all feature vectors.

• Now, $h(x) = w^T x$

We have a classifier

• h(x) = w^T x gives a *score*

- Score negative: red
- Score positive: blue

• Where does w come from?

How do we find a good W?

- Step 1: For a given W, decide on a Loss
 Function: a measure of how much we dislike the line.
- Step 2: use optimization to find the W that minimizes the loss function.

Loss Functions

- Step 1: For a given W, decide on a
 Loss Function: a measure of how much we dislike this classifier.
- Step 2: use **optimization** to find the W that *minimizes* the loss function.
 - Linear regression: solvable in closed form
 - Useful loss functions in vision: no closed form.

Loss Functions

- Step 1: For a given W, decide on a Loss Function: a measure of how much we dislike this classifier.
- Loss Function intuition:
 - loss should be large if many data points are misclassified
 - loss should be small (0?) if all data is classified correctly.

Loss function: Ideas

Softmax Classifier / Cross-Entropy Loss: Intuition

W[⊤] x gives us a vector of scores, one per class (each row of W is a classifier)

Wouldn't it be nice to interpret these as probabilities?

Softmax Classifier / Cross-Entropy Loss: Intuition

 $W^T x$ gives us a vector of scores, one per class (each row of W is a classifier)

Wouldn't it be nice to interpret these as probabilities? But they're not...

- $\operatorname{can} \operatorname{be} < 0$
- don't all sum to 1

But we can treat them as **unnormalized log probabilities**.

Softmax Classifier / Cross-Entropy Loss

 $f = W^T x$ gives us a vector of scores, one per class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all positive values, then normalize to sum to 1:

$$p(x_i \text{ is class } k) = \frac{e^{j \kappa}}{\sum_j e^{f_j}}$$

 f_{L}

Softmax Classifier / Cross-Entropy Loss

 $f = W^T x$ gives us a vector of scores, one per class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all positive values, then normalize to sum to 1:

 $p(x_i \text{ is class } k) = \frac{e^{f_k}}{\sum_j e^{f_j}}$ **Cross-entropy loss:** measure *KL divergence* between the **predicted** distribution and the **true** distribution:

$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}}\right)$$

Cross-Entropy Loss: Intuition

Taking stock

• We have:

 $-\phi = unravel(rgb2gray(img))$, a feature extractor

 $-h(x) = W^T x$, a multiclass linear classifier

– L = , a loss function

$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}}\right)$$

Taking stock

• We have:

 $-\phi$ = unravel(rgb2gray(img)), a feature extractor

 $-h(x) = W^T x$, a multiclass linear classifier

– L = , a loss function

$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}}\right)$$

• We don't have:

- a way to find a W that results in a small L.

Loss Functions

- Step 1: For a given W, decide on a
 Loss Function: a measure of how much we dislike this classifier.
- Step 2: use **optimization** to find the W that *minimizes* the loss function.
 - Linear regression: solvable in closed form
 - Most of the time: no closed form.

Optimization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

How do we find a W that minimizes L?

• Bad idea: Random search.

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
  W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
  loss = L(X train, Y train, W) # get the loss over the entire training set
  if loss < bestloss: # keep track of the best solution
    bestloss = loss
    bestW = W
  print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
                                                       Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
```

How'd that go for you?

Lets see how well this works on the test set...

Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
returns 0.1555

15.5% accuracy! not bad! (SOTA is ~95%)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Finding a W that minimizes L

• A better idea: walk downhill.

Gradient Descent: Generally

 Gradient of the loss function with respect to the *weights* tells us how to change the weights to improve the loss.

Gradient Descent

Vanilla Gradient Descent

```
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step size * weights grad # perform parameter update
```

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Gradient Descent: Intuition

Gradient Descent: Intuition

Gradient Descent: Demo

 <u>http://vision.stanford.edu/teaching/cs231n-</u> <u>demos/linear-classify/</u>

– select "Softmax" radio button at the bottom

Gradient Descent: Generally

 Gradient of the loss function with respect to the *weights* tells us how to change the weights to improve the loss.

- L(X; W) depends on
 All data points x₁..x_n
 - Very expensive to evaluate

Stochastic Gradient Descent

Vanilla Minibatch Gradient Descent

```
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

• L(X; W) depends on

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

- All data points x₁..x_n
- Weights W
- Very expensive to evaluate if you have a lot of data.

Stochastic Gradient Descent

- Idea: consider only a few data points at a time.
- Loss is now computed using only a small batch (minibatch) of data points.
- Update weights the same way using the gradient of L wrt the weights.

Stochastic Gradient Descent: Intuition

