CSCI 497P/597P: Computer Vision

Scott Wehrwein

Image Classification and Recognition

PIPE 0.94

Reading

* http://cs231n.github.io/classification/

* Szeliski, 2"9 edition, Chapter 5

Goals

Understand some of the reasons why image
recognition is hard.

Understand the standard ML pipeline for image
classification problems:

— Represent images as feature vectors

— Learn a classifier function from labeled data

— Classify novel images using the learned classifier

Understand KNN classifier and why it doesn’t work so
well on images.

Understand the importance of splitting data into
train/val/test sets when developing algorithms and
tuning hyperparameters.

Image classification

* Given an image, produce a label

e Label can be:
— 0/1 or yes/no: Binary classification
— one-of-k: Multiclass classification

— 0/1 for each of k concepts: Multilabel
classification

Image classification - Binary
classification

|s this a dog?
Yes

Image classification - Multiclass
classification

Which of these is it:
dog, cat or zebra?
Dog

Image classification - Multilabel
classification

|s this a dog? Yes
Is this furry? Yes
Is this sitting down? Yes

T
v
= 7
> ©
@)
[] [] r
- S
O 2
e re
O n £
= m %
(0p)
N m S
® 0 o &
(@) AN - O
f [] [] []
@)
>
QNN HD D
@)
o
w
c i
(=)
< X
i

A history of classification : Caltech 101

e 101 classes
o SSlaseas—
*~30 examples per class

* Strong category-
specific biases

e Clean images

A history of classification: PASCAL VOC

e 20 classes

 ~“500 examples per
class

* Clutter, occlusion,
natural scenes

MNIST Caltech 101

—

1990’s 2004 2007-2012

A history of classification: ImageNet

e 1000 classes

* ~1000 examples
per class

* Mix of cluttered
and clean images

MNIST Caltech 101 PASCAL VOC

1990’s 2004 2007-2013 2013-2017

Why is recognition hard?

Pose variation

Why is recognition hard?

Why is recognition hard?

R

Scale variation

Why is recognition hard?

Why is recognition hard?

Intrinsic intra-class variation

Why is recognition hard?

Inter-class similarity

The language of recognition

* Boundaries of classes are often fuzzy

 “Adogis an animal with four legs, a tail and a
snout”

* Really?

Other Recognition Problems

* Object Detection

(Vs
&
£
O
O
| -
ol
C
O
x
-
o]0
O
O
Q
o
| -
Q
-
)
@

* Semantic Segmentation

Other Recognition Problems

* Instance Segmentation, Panoptic Segmentation

(c) Instance Segmentation (d) Panoptic Segmentation

Chen et al. A Survey on Deep Learning for Localization and Mapping:
Towards the Age of Spatial Machine Intelligence

Other Recognition Problems

* Action Recognition

Main Activity = Left Spike

Image: http://nguyenducminhkhoi.com/project/action_recognition/

How are we going to solve this?

An image classifier

def classify_image(image):

return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Attempts have been made

Find edges

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels):
Machine learning!
return model

def predict(model, test_images):

Use model to predict labels
return test_labels

airplane

B = e

i
|
|

e a]
il "IRJ

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Representing Images

* We have images; ML works on vectors.

* To do machine learning, we need a function
that takes an image and converts it into a
vector.

* Given an image, use ¢ to get a vector
representing a point in high dimensional
space

Classifying Images

* Given an image, use ¢ to get a vector and
plot it as a point in high dimensional space

* Then, use a classifier function to map
feature vectors to class labels:

+ h(T

) — ((dog”

Classifying Images: Pipeline

1. Represent the image in some feature space

2. Classify the image based on its feature
representation.

- (T) - “dog”

Two important pieces

* The feature extractor (¢)

* The classifier (h)

Let’s make the (almost)
simplest possible @

* Represent an image as a vector in R

e Step 1: convert image to gray-scale and
resize to fixed size

Feature space: representing images as
vectors

e Step 2: Flatten 2D array into 1D vector

emd

Let’s make the simplest possible h

+ h(x) = "dog”

Let’s make the simplest possible h

° h(X) — Hdogﬂ
* Okay, let’s get a little less simple than that.

Let’s make a very simple h

h(x) = "dog”
Okay, let’s get a little less simple than that.

I’ve never seen x before, but I've seen a bunch of
other things.

h(x) = the label of the most similar thing to x of all
the things I've seen.

— assumption: similar data points have similar labels

A Simple h: Nearest Neighbor Classifier

the data NN classifier
, o b
Mate ‘o° PO D v gy >
0..0 .: . v) :s b o
: :. :Q. o ¢ ° . ::o:o%oo °)
y ° e ® ° ’:.’o
® o0 % o® a‘
. " o: ‘-.':. e Ty ‘ ;
o ®e v .‘.. .‘ 4 ° °
° o °
®e e ©® :. f 0. e®
o o .~ ®
def train(images, labels): Memorize all

Machine learning!
return model

data and labels

def predict(model, test_images): Predict the label
Use model to predict labels —— of the most similar

return test_labels . . .
training image

Figures: Fei-Fei Li, Justin Johnson, & Serena Yeung

import numpy as np

class NearestNeighbor:
def _ init__ (self):
pass

def train(:zcl?, X, y):
"% X is N x D where each row is an example. Y is l-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr =X
self.ytr=y

def predict(scl7, X):
""" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
lets make sure that the output type matches the Input type
Ypred = np.zeros(num test, dtype = sclf.ytr.dtype)

loop over all test rows
for i in xrange(num test):
find the nearest training image to the 1'th test image
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[1i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

import numpy as n . .
PR Nearest Neighbor classifier
class NearestNeighbor:
def _ init_ (self):
pass

def train(seclf, X, y): . ..
“uv X is N x D where each row is an example. Y is 1-dimension of size N """ Memorize trfi|r1|r1g; data

the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr =y

def predict(scl?, X):
""" X is N x D where each row is an example we wish to predict label for
num_test = X.shape[0]
lets make sure that the output type matches the input type

Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

loop over all test rows
for i in xrange(num_test):
find the nearest training image to the i'th test image
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance

= +

Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

import numpy as np

class NearestNeighbor:
def _ init__ (self):
pass

def train(sclf, X, y):
““* X is N x D where each row is an example. Y is l-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(scl7, X):
“"* X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
lets make sure that

Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

the output type matches the input type

Nearest Neighbor classifier

loop over all test rows
for i in xrange(num_test):
find the nearest training image to the i'th test image
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

For each test image:
Find closest train image
Predict label of nearest image

return Ypred

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Nearest Neighbor Classifier

L Ty s chg What’s the runtime
class NearestNeighbor: of train?
def _ init_ ()
pass
def train(ey)

" X is N x D where each row is an example. Y is 1l-dimension of size N """

Xtr = X
YET= N What’s the runtime
def predict(scl?, X): of predict?

“"" X is N x D where each row is an example we wish to predict label for
num test = X.shape[0]

Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num_test):

distances = np.sum(np.abs(Xtr - X[i,:]), axis = 1)
min index = np.argmin(distances)
Ypred[i] = ytr[min_index]

return Ypred Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Nearest Neighbor Classifier

P DRy S8 What’s the runtime
class NearestNeighbor: of train?
def _ init_ (): 0(1)
pass
def train(ey)

"* X is N x D where each row is an example. Y is 1l-dimension of size N """

Xtr =X
2t What’s the runtime
def predict(scl?, X): of predict?
“* X is N x D where each row is an example we wish to predict label for """ O(N)
num test = X.shape[0]
Ypred = np.zeros(num test, dtype = .ytr.dtype)
Ideally, it'd be the
for i in >rrango(num_test): Other Way around:
P * slow training
distances = np.sum(np.abs(Xtr - X[1i,:]), axis = 1) » fast prediction
min index = np.argmin(distances)
Ypred[i] = ytr[min_index]

return Ypred Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Demo:
Nearest Neighbor on MNIST

YELREERF
BN AR
BEE\E A I
EEEEe EN
BER B«
NEETE " N
AYEvEe S
BE <Y
EEE RS SSHR
NEE M5 Nulm
L e o e o s e o o |
al R TETT

g

Yeun

& Serena

Slide: Fei-Fei Li, Justin Johnson,

YL R LR FL [
N B AR
BEE\E o I
EE D Ee EN
OEE B«
N3P « % NS
NYEyEe JEH0
B E G
EEE RS SSHR
53) 1 O
L e e o e o e o
al R TETT -

g

Yeun

& Serena

Slide: Fei-Fei Li, Justin Johnson,

An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

 What do we mean by “nearest” anyway?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance
di(I,, 1) Z|I” 17| do(I, I) = \/’Z (&)

dh
SPARNSD

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance
di(Ii,) =) [I7 - If| dy(I, 1) = \/Z (1 -5)’
P I 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Demo

e http://vision.stanford.edu/teaching/cs231n-demos/knn/

Simple Image Classification Algorithm

. ¢ : Convert to grayscale and unravel into a
vector.

* h: Classify using majority label of the k nearest
neighbors according to a distance metric d.

 kandd are hyperparameters. How do we know
what to choose?

— Depends on the problem

— Usually no principled way to choose — trial and error is
often the only way.

Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

train

test

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train test
Idea #3: Split data into train, val, and test; choose Better!
hyperparameters on val and evaluate on test '
train validation test

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds,
try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original Boxed Shifted Tinted

(all 3 images have same L2 distance to the one on the left)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

k-Nearest Neighbor on images never used.

Dimensions = 3

- Curse of dimensionality Points = 43
o © 0 o0 o0 /5
o °© © ©° © o O O @) OOOO
T © © © ©° o o o o f® ooO
© O O O o o o0 o O

KNN: Bottom Line

* Fast to train but slow to predict

* Distance metrics don’t behave well for high-
dimensional image vectors

Classifying Images

* Nearest Neighbor Classifier
the data NN classifier h

Linear classifiers

* Finding nearest neighbor is slow.

* Basicidea:
— Training time: find a line that separates the data

— Testing time: which side of the line is @(x) on?
+Fast to compute

- Restrictive

¢

Some history of the
Antedeepluvian Era

e Common pipeline from days of yore:
— Detect corners and extract SIFT features
— Collect features into a “bag of features”

— (if you’re feeling fancy) maintain some spatial
information

— Somehow convert feature bag to fixed size
— Apply linear classifier.

* Key idea: ¢ is designed by hand, while h is
learned from data.

Some history of the
Antedeepluvian Era

* Key idea: ¢ is designed by hand, while h is
learned from data.

* Nowadays: learn both from data - “end-to-
end”: image goes in, label comes out.
— Enabled only recently by bigger

* labeled datasets
e compute power (GPUs)

