Image Classification and Recognition
Reading

• http://cs231n.github.io/classification/

• Szeliski, 2nd edition, Chapter 5
Goals

• Understand some of the reasons why image recognition is hard.
• Understand the standard ML pipeline for image classification problems:
 – Represent images as feature vectors
 – Learn a classifier function from labeled data
 – Classify novel images using the learned classifier
• Understand KNN classifier and why it doesn’t work so well on images.
• Understand the importance of splitting data into train/val/test sets when developing algorithms and tuning hyperparameters.
Image classification

• Given an image, produce a label
• Label can be:
 – 0/1 or yes/no: Binary classification
 – one-of-k: Multiclass classification
 – 0/1 for each of k concepts: Multilabel classification
Image classification - Binary classification

Is this a dog? Yes
Image classification - Multiclass classification

Which of these is it: dog, cat or zebra?

Dog
Image classification - Multilabel classification

Is this a dog? Yes
Is this furry? Yes
Is this sitting down? Yes
A history of classification: MNIST

- 2D
- 10 classes
- 6000 examples per class

1990’s
A history of classification: Caltech 101

- 101 classes
- 10 classes
- ~30 examples per class
- Strong category-specific biases
- Clean images

1990’s

MNIST

2004
A history of classification: PASCAL VOC

- 20 classes
- ~500 examples per class
- Clutter, occlusion, natural scenes

1990’s

MNIST

2004

Caltech 101

2007-2012
A history of classification: ImageNet

- 1000 classes
- ~1000 examples per class
- Mix of cluttered and clean images

- MNIST (1990’s)
- PASCAL VOC (2007-2013)
- 2013-2017
Why is recognition hard?

Pose variation
Why is recognition hard?

Lighting variation
Why is recognition hard?

Scale variation
Why is recognition hard?

Clutter and occlusion
Why is recognition hard?

Intrinsic intra-class variation
Why is recognition hard?

Inter-class similarity
The language of recognition

- Boundaries of classes are often fuzzy
- “A dog is an animal with four legs, a tail and a snout”
- Really?
Other Recognition Problems

- Object Detection
Other Recognition Problems

• Semantic Segmentation
Other Recognition Problems

- Instance Segmentation, Panoptic Segmentation

Chen et al. A Survey on Deep Learning for Localization and Mapping: Towards the Age of Spatial Machine Intelligence
Other Recognition Problems

• Action Recognition

Image: http://nguyenducminhkhoi.com/project/action_recognition/
How are we going to solve this?

An image classifier

```python
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.
Attempts have been made
Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

```python
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```
Representing Images

• We have images; ML works on vectors.
• To do machine learning, we need a function that takes an image and converts it into a vector.

\[\phi (\text{image}) = \text{vector} \]

• Given an image, use \(\phi \) to get a vector representing a point in high dimensional space.
Classifying Images

• Given an image, use ϕ to get a vector and plot it as a point in high dimensional space

\[
\phi \left(\begin{array}{c}
\end{array} \right) = \begin{array}{c}
\end{array}
\]

• Then, use a classifier function to map feature vectors to class labels:

\[
h(\begin{array}{c}
\end{array}) = \text{“dog”}
\]

• ϕ (image) = vector in high dimensional space
• h (vector) = class label (dog)
Classifying Images: Pipeline

1. Represent the image in some *feature space*

\[\phi (\cdot) = \]

\[\Phi (\cdot) = \]

2. Classify the image based on its feature representation.

• \(h(\cdot) = “dog” \)
Two important pieces

• The feature extractor \((\phi)\)

• The classifier \((h)\)
Let’s make the (almost) simplest possible ϕ

- Represent an image as a vector in \mathbb{R}^d
- Step 1: convert image to gray-scale and resize to fixed size
Feature space: representing images as vectors

- Step 2: Flatten 2D array into 1D vector
Let’s make the simplest possible h

- $h(x) = "dog"$
Let’s make the simplest possible h

- $h(x) = "\text{dog}"$
- Okay, let’s get a little less simple than that.
Let’s make a very simple h

- $h(x) = "dog"$
- Okay, let’s get a little less simple than that.

- I’ve never seen x before, but I’ve seen a bunch of other things.

- $h(x) = \text{the label of the most similar thing to } x \text{ of all the things I’ve seen.}$
 - assumption: similar data points have similar labels
A Simple h: Nearest Neighbor Classifier

```python
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Memorize all data and labels

Predict the label of the most similar training image

Figures: Fei-Fei Li, Justin Johnson, & Serena Yeung
```python
import numpy as np

class NearestNeighbor:
    def __init__(self):
        pass

    def train(self, X, y):
        """
        X is N x D where each row is an example. Y is 1-dimension of size N
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y
        """

    def predict(self, X):
        """
        X is N x D where each row is an example we wish to predict label for
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
        # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the L1 distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances) # get the index with smallest distance
            Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
        return Ypred
```
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimensional of size N ""
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for ""
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
 return Ypred
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred

Nearest Neighbor classifier

For each test image:
Find closest train image
Predict label of nearest image
Nearest Neighbor Classifier

```python
import numpy as np

class NearestNeighbor:
    def __init__(self):
        pass

    def train(self, X, y):
        """ X is N x D where each row is an example. Y is 1-dimension of size N ""
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y

    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for ""
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

        # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the L1 distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances) # get the index with smallest distance
            Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

        return Ypred
```

What’s the runtime of train?

What’s the runtime of predict?
Nearest Neighbor Classifier

```python
import numpy as np

class NearestNeighbor:
    def __init__(self):
        pass

    def train(self, X, y):
        """ X is N x D where each row is an example. Y is 1-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y

    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

        # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the L1 distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances)  # get the index with smallest distance
            Ypred[i] = self.ytr[min_index]  # predict the label of the nearest example

        return Ypred
```

What’s the runtime of train?
O(1)

What’s the runtime of predict?
O(N)

Ideally, it’d be the other way around:
• slow training
• fast prediction

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
Demo:
Nearest Neighbor on MNIST
An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take majority vote from K closest points

K = 1

K = 3

K = 5

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take majority vote from K closest points

• What do we mean by “nearest” anyway?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance
\[d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p| \]

L2 (Euclidean) distance
\[d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2} \]
K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

\[d_1(I_1, I_2) = \sum_p |I^p_1 - I^p_2| \]

L2 (Euclidean) distance

\[d_2(I_1, I_2) = \sqrt{\sum_p (I^p_1 - I^p_2)^2} \]

K = 1

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
Demo

Simple Image Classification Algorithm

• ϕ: Convert to grayscale and unravel into a vector.

• h: Classify using majority label of the k nearest neighbors according to a distance metric d.

• k and d are hyperparameters. How do we know what to choose?
 – Depends on the problem
 – Usually no principled way to choose – trial and error is often the only way.
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: \(K = 1 \) always works perfectly on training data
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: $K = 1$ always works perfectly on training data

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

Your Dataset

| train | test |
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

<table>
<thead>
<tr>
<th>Your Dataset</th>
</tr>
</thead>
</table>

Idea #2: Split data into *train* and *test*, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

<table>
<thead>
<tr>
<th>train</th>
<th>test</th>
</tr>
</thead>
</table>

Idea #3: Split data into *train*, *val*, and *test*; choose hyperparameters on val and evaluate on test

Better!

<table>
<thead>
<tr>
<th>train</th>
<th>validation</th>
<th>test</th>
</tr>
</thead>
</table>
Setting Hyperparameters

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results.

<table>
<thead>
<tr>
<th>fold 1</th>
<th>fold 2</th>
<th>fold 3</th>
<th>fold 4</th>
<th>fold 5</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>fold 1</td>
<td>fold 2</td>
<td>fold 3</td>
<td>fold 4</td>
<td>fold 5</td>
<td></td>
</tr>
<tr>
<td>fold 1</td>
<td>fold 2</td>
<td>fold 3</td>
<td>fold 4</td>
<td>fold 5</td>
<td></td>
</tr>
</tbody>
</table>

Useful for small datasets, but not used too frequently in deep learning.
k-Nearest Neighbor on images **never used.**

- Very slow at test time
- Distance metrics on pixels are not informative

Original	Boxed	Shifted	Tinted

(all 3 images have same L2 distance to the one on the left)
k-Nearest Neighbor on images *never used*.

- Curse of dimensionality

Dimensions = 1
Points = 4

Dimensions = 2
Points = 4^2

Dimensions = 3
Points = 4^3
KNN: Bottom Line

- Fast to train but slow to predict
- Distance metrics don’t behave well for high-dimensional image vectors
Classifying Images

- Nearest Neighbor Classifier
 - Data
 - NN classifier h

- Linear Classifier
 - Data
 - Line h
Linear classifiers

• Finding nearest neighbor is slow.

• Basic idea:
 – Training time: find a line that separates the data
 – Testing time: which side of the line is $\phi(x)$ on?

 + Fast to compute
 - Restrictive
Some history of the Antedeepluvian Era

• Common pipeline from days of yore:
 – Detect corners and extract SIFT features
 – Collect features into a “bag of features”
 – (if you’re feeling fancy) maintain some spatial information
 – Somehow convert feature bag to fixed size
 – Apply linear classifier.

• Key idea: ϕ is designed by hand, while h is learned from data.
Some history of the Ante-deepluvian Era

• Key idea: ϕ is designed by hand, while h is learned from data.

• Nowadays: learn both from data - “end-to-end”: image goes in, label comes out.
 – Enabled only recently by bigger
 • labeled datasets
 • compute power (GPUs)