CSCI 497P/597P: Computer Vision

Scott Wehrwein

Image Classification and Recognition

PIPE 0.94




Reading

* http://cs231n.github.io/classification/

* Szeliski, 2"9 edition, Chapter 5



Goals

Understand some of the reasons why image
recognition is hard.

Understand the standard ML pipeline for image
classification problems:

— Represent images as feature vectors

— Learn a classifier function from labeled data

— Classify novel images using the learned classifier

Understand KNN classifier and why it doesn’t work so
well on images.

Understand the importance of splitting data into
train/val/test sets when developing algorithms and
tuning hyperparameters.



Image classification

* Given an image, produce a label

e Label can be:
— 0/1 or yes/no: Binary classification
— one-of-k: Multiclass classification

— 0/1 for each of k concepts: Multilabel
classification



Image classification - Binary
classification

|s this a dog?
Yes




Image classification - Multiclass
classification

Which of these is it:
dog, cat or zebra?
Dog




Image classification - Multilabel
classification

|s this a dog? Yes
Is this furry? Yes
Is this sitting down? Yes
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A history of classification : Caltech 101

e 101 classes
o SSlaseas—
*~30 examples per class

* Strong category-
specific biases

e Clean images




A history of classification: PASCAL VOC

e 20 classes

 ~“500 examples per
class

* Clutter, occlusion,
natural scenes

MNIST Caltech 101

—

1990’s 2004 2007-2012




A history of classification: ImageNet

e 1000 classes

* ~1000 examples
per class

* Mix of cluttered
and clean images

MNIST Caltech 101 PASCAL VOC

1990’s 2004 2007-2013 2013-2017



Why is recognition hard?

Pose variation



Why is recognition hard?




Why is recognition hard?

R

Scale variation



Why is recognition hard?




Why is recognition hard?

Intrinsic intra-class variation



Why is recognition hard?

Inter-class similarity



The language of recognition

* Boundaries of classes are often fuzzy

 “Adogis an animal with four legs, a tail and a
snout”

* Really?




Other Recognition Problems

* Object Detection
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* Semantic Segmentation




Other Recognition Problems

* Instance Segmentation, Panoptic Segmentation

(c) Instance Segmentation (d) Panoptic Segmentation

Chen et al. A Survey on Deep Learning for Localization and Mapping:
Towards the Age of Spatial Machine Intelligence




Other Recognition Problems

* Action Recognition

Main Activity = Left Spike

Image: http://nguyenducminhkhoi.com/project/action_recognition/



How are we going to solve this?

An image classifier

def classify_image(image):

return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Attempts have been made

Find edges

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels):
# Machine learning!
return model

def predict(model, test_images):

# Use model to predict labels
return test_labels

airplane
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Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Representing Images

* We have images; ML works on vectors.

* To do machine learning, we need a function
that takes an image and converts it into a
vector.

* Given an image, use ¢ to get a vector
representing a point in high dimensional
space



Classifying Images

* Given an image, use ¢ to get a vector and
plot it as a point in high dimensional space

* Then, use a classifier function to map
feature vectors to class labels:

+ h( T

) — ((dog”



Classifying Images: Pipeline

1. Represent the image in some feature space

2. Classify the image based on its feature
representation.

- (T ) - “dog”




Two important pieces

* The feature extractor (¢)

* The classifier (h)



Let’s make the (almost)
simplest possible @

* Represent an image as a vector in R

e Step 1: convert image to gray-scale and
resize to fixed size




Feature space: representing images as
vectors

e Step 2: Flatten 2D array into 1D vector

emd




Let’s make the simplest possible h

+ h(x) = "dog”



Let’s make the simplest possible h

° h(X) — Hdogﬂ
* Okay, let’s get a little less simple than that.



Let’s make a very simple h

h(x) = "dog”
Okay, let’s get a little less simple than that.

I’ve never seen x before, but I've seen a bunch of
other things.

h(x) = the label of the most similar thing to x of all
the things I've seen.

— assumption: similar data points have similar labels



A Simple h: Nearest Neighbor Classifier

the data NN classifier
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def train(images, labels): Memorize all

# Machine learning!
return model

data and labels

def predict(model, test_images): Predict the label
# Use model to predict labels —— of the most similar

return test_labels . . .
training image

Figures: Fei-Fei Li, Justin Johnson, & Serena Yeung



import numpy as np

class NearestNeighbor:
def _ init__ (self):
pass

def train(:zcl?, X, y):
"% X is N x D where each row is an example. Y is l-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr =X
self.ytr=y

def predict(scl7, X):
""" X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
# lets make sure that the output type matches the Input type
Ypred = np.zeros(num test, dtype = sclf.ytr.dtype)

# loop over all test rows
for i in xrange(num test):
# find the nearest training image to the 1'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[1i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



import numpy as n . .
PR Nearest Neighbor classifier
class NearestNeighbor:
def _ init_ (self):
pass

def train(seclf, X, y): . ..
“uv X is N x D where each row is an example. Y is 1-dimension of size N """ Memorize trfi|r1|r1g; data

# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr =y

def predict(scl?, X):
""" X is N x D where each row is an example we wish to predict label for
num_test = X.shape[0]
# lets make sure that the output type matches the input type

Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

# loop over all test rows
for i in xrange(num_test):
# find the nearest training image to the i'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance

= +

Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



import numpy as np

class NearestNeighbor:
def _ init__ (self):
pass

def train(sclf, X, y):
““* X is N x D where each row is an example. Y is l-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(scl7, X):
“"* X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
# lets make sure that

Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

the output type matches the input type

Nearest Neighbor classifier

# loop over all test rows
for i in xrange(num_test):
# find the nearest training image to the i'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

For each test image:
Find closest train image
Predict label of nearest image

return Ypred

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Nearest Neighbor Classifier

L Ty s chg What’s the runtime
class NearestNeighbor: of train?
def _ init_ ( )
pass
def train( ey )

" X is N x D where each row is an example. Y is 1l-dimension of size N """

Xtr = X
YET= N What’s the runtime
def predict(scl?, X): of predict?

“"" X is N x D where each row is an example we wish to predict label for
num test = X.shape[0]

Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num_test):

distances = np.sum(np.abs( Xtr - X[i,:]), axis = 1)
min index = np.argmin(distances)
Ypred[i] = ytr[min_index]

return Ypred Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Nearest Neighbor Classifier

P DRy S8 What’s the runtime
class NearestNeighbor: of train?
def _ init_ ( ): 0(1)
pass
def train( ey )

"* X is N x D where each row is an example. Y is 1l-dimension of size N """

Xtr =X
2t What’s the runtime
def predict(scl?, X): of predict?
“* X is N x D where each row is an example we wish to predict label for """ O(N)
num test = X.shape[0]
Ypred = np.zeros(num test, dtype = .ytr.dtype)
Ideally, it'd be the
for i in >rrango(num_test): Other Way around:
P * slow training
distances = np.sum(np.abs( Xtr - X[1i,:]), axis = 1) » fast prediction
min index = np.argmin(distances)
Ypred[i] = ytr[min_index]

return Ypred Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Demo:
Nearest Neighbor on MNIST
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Slide: Fei-Fei Li, Justin Johnson,
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Slide: Fei-Fei Li, Justin Johnson,



An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

 What do we mean by “nearest” anyway?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance
di(I,, 1) Z|I” 17| do(I, I) = \/’Z (&)

dh
SPARNSD

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung




K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance
di(Ii, ) =) [I7 - If| dy(I, 1) = \/Z (1 -5)’
P I 4

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Demo

e http://vision.stanford.edu/teaching/cs231n-demos/knn/




Simple Image Classification Algorithm

. ¢ : Convert to grayscale and unravel into a
vector.

* h: Classify using majority label of the k nearest
neighbors according to a distance metric d.

 kandd are hyperparameters. How do we know
what to choose?

— Depends on the problem

— Usually no principled way to choose — trial and error is
often the only way.



Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

train

test

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train test
Idea #3: Split data into train, val, and test; choose Better!
hyperparameters on val and evaluate on test '
train validation test

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds,
try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung




k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original Boxed Shifted Tinted

(all 3 images have same L2 distance to the one on the left)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



k-Nearest Neighbor on images never used.

Dimensions = 3

- Curse of dimensionality Points = 43
o © 0 o0 o0 /5
o °© © ©° © o O O @) OOOO
T © © © ©° o o o o f® ooO
© O O O o o o0 o O




KNN: Bottom Line

* Fast to train but slow to predict

* Distance metrics don’t behave well for high-
dimensional image vectors



Classifying Images

* Nearest Neighbor Classifier
the data NN classifier h




Linear classifiers

* Finding nearest neighbor is slow.

* Basicidea:
— Training time: find a line that separates the data

— Testing time: which side of the line is @(x) on?
+Fast to compute

- Restrictive

¢




Some history of the
Antedeepluvian Era

e Common pipeline from days of yore:
— Detect corners and extract SIFT features
— Collect features into a “bag of features”

— (if you’re feeling fancy) maintain some spatial
information

— Somehow convert feature bag to fixed size
— Apply linear classifier.

* Key idea: ¢ is designed by hand, while h is
learned from data.



Some history of the
Antedeepluvian Era

* Key idea: ¢ is designed by hand, while h is
learned from data.

* Nowadays: learn both from data - “end-to-
end”: image goes in, label comes out.
— Enabled only recently by bigger

* labeled datasets
e compute power (GPUs)



