CSCI 497P/597P: Computer Vision Scott Wehrwein

Image Classification and Recognition

Reading

http://cs231n.github.io/classification/

• Szeliski, 2nd edition, Chapter 5

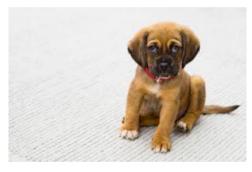
Goals

- Understand some of the reasons why image recognition is hard.
- Understand the standard ML pipeline for image classification problems:
 - Represent images as feature vectors
 - Learn a classifier function from labeled data
 - Classify novel images using the learned classifier
- Understand KNN classifier and why it doesn't work so well on images.
- Understand the importance of splitting data into train/val/test sets when developing algorithms and tuning hyperparameters.

Image classification

- Given an image, produce a label
- Label can be:
 - 0/1 or yes/no: Binary classification
 - one-of-k: Multiclass classification
 - 0/1 for each of k concepts: Multilabel classification

Image classification - Binary classification



Is this a dog? Yes

Image classification - Multiclass classification

Which of these is it: dog, cat or zebra?

Dog

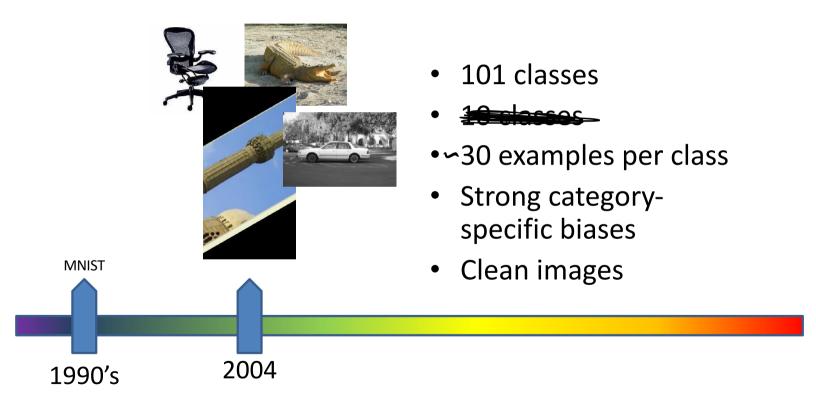
Image classification - Multilabel classification

Is this a dog? Yes
Is this furry? Yes
Is this sitting down? Yes

A history of classification: MNIST

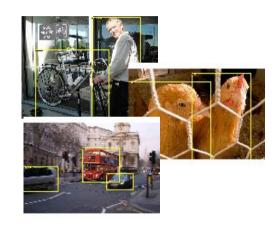
- 2D
- 10 classes
- 6000 examples per class

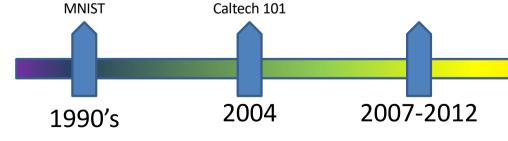
A history of classification: Caltech 101



A history of classification: PASCAL VOC

- 20 classes
- ~500 examples per class
- Clutter, occlusion, natural scenes





A history of classification: ImageNet

• 1000 classes

MNIST

- ~1000 examples per class
- Mix of cluttered and clean images

Caltech 101

Lighting variation

Scale variation

Clutter and occlusion

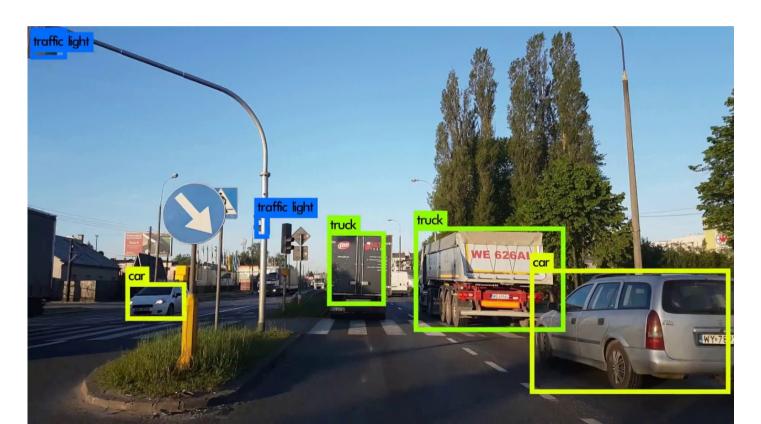
Intrinsic intra-class variation

Inter-class similarity

The language of recognition

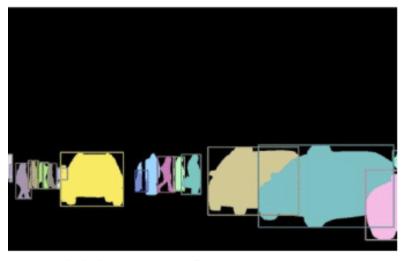
- Boundaries of classes are often fuzzy
- "A dog is an animal with four legs, a tail and a snout"
- Really?

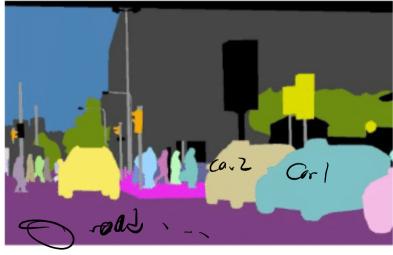
Object Detection



Semantic Segmentation

Instance Segmentation, Panoptic Segmentation





(d) Panoptic Segmentation

Chen et al. <u>A Survey on Deep Learning for Localization and Mapping:</u>
<u>Towards the Age of Spatial Machine Intelligence</u>

Action Recognition

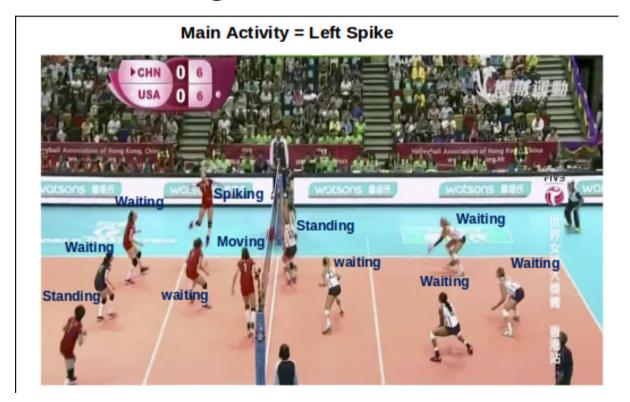


Image: http://nguyenducminhkhoi.com/project/action_recognition/

How are we going to solve this?

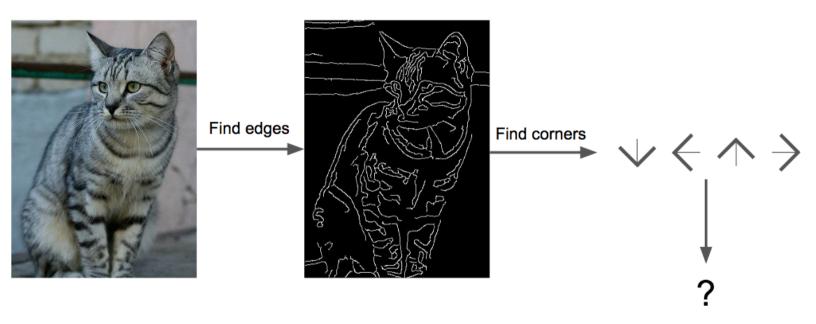
An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made



Machine Learning: Data-Driven Approach

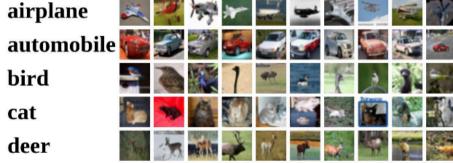
- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier

Example training set

3. Evaluate the classifier on new images


```
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

return model



Representing Images

- We have images; ML works on vectors.
- To do machine learning, we need a function that takes an image and converts it into a vector.

$$\phi$$
 () =

• Given an image, use ϕ to get a vector representing a point in high dimensional space

Classifying Images

• Given an image, use ϕ to get a vector and plot it as a point in high dimensional space

- Then, use a classifier function to map feature vectors to class labels:
- h() = "dog"

Classifying Images: Pipeline

1. Represent the image in some feature space

- 2. Classify the image based on its feature representation.
- h() = "dog"

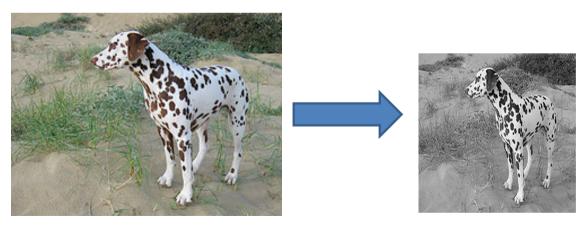
Two important pieces

• The feature extractor (ϕ)

• The classifier (h)

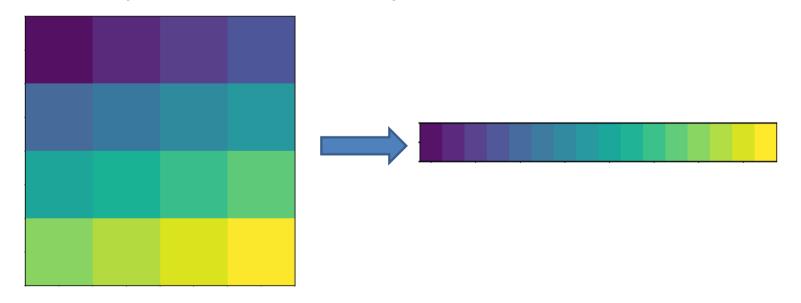
Let's make the (almost) simplest possible ϕ

- Represent an image as a vector in \mathbb{R}^d
- Step 1: convert image to gray-scale and resize to fixed size



Feature space: representing images as vectors

Step 2: Flatten 2D array into 1D vector



Let's make the simplest possible h

• h(x) = "dog"

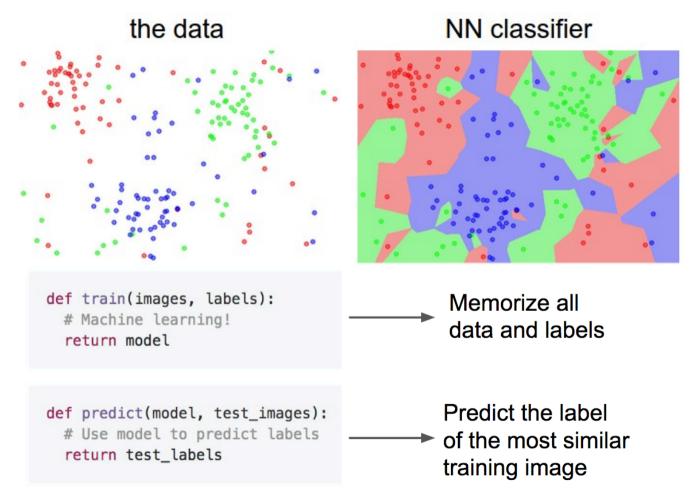
Let's make the simplest possible h

- h(x) = "dog"
- Okay, let's get a little less simple than that.

Let's make a very simple h

- h(x) = "dog"
- Okay, let's get a little less simple than that.
- I've never seen x before, but I've seen a bunch of other things.
- h(x) = the label of the most similar thing to x of all the things I've seen.
 - assumption: similar data points have similar labels

A Simple h: Nearest Neighbor Classifier



Figures: Fei-Fei Li, Justin Johnson, & Serena Yeung

```
pass
def train(self, X, v):
  """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
  self.Xtr = X
  self.vtr = v
def predict(self, X):
  """ X is N x D where each row is an example we wish to predict label for """
  num test = X.shape[0]
 # lets make sure that the output type matches the input type
  Ypred = np.zeros(num test, dtype = self.ytr.dtype)
  # loop over all test rows
  for i in xrange(num test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min index] # predict the label of the nearest example
  return Ypred
                                                    Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
```

import numpy as np

class NearestNeighbor:
 def init (self):

```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
  def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
  def predict(self, X):
   """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier

Memorize training data

```
class NearestNeighbor:
    def __init__(self):
        pass

def train(self, X, y):
        """ X is N x D where each row is an example. Y is 1-dimension of size N """
        # the nearest neighbor classifier simply remembers all the training data
        self.Xtr = X
        self.ytr = y

def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for """
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

find the nearest training image to the i'th test image

using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)

min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

```
Nearest Neighbor classifier
```

For each test image:
Find closest train image
Predict label of nearest image

return Ypred

loop over all test rows

for i in xrange(num test):

Nearest Neighbor Classifier

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
 def train(self, X, v):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
       X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
      min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
```

What's the runtime of train?

What's the runtime of predict?

return Ypred

Nearest Neighbor Classifier

```
import numpy as np
class NearestNeighbor:
  def init (self):
    pass
 def train(self, X, v):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
       X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
      min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
```

What's the runtime of train?
O(1)

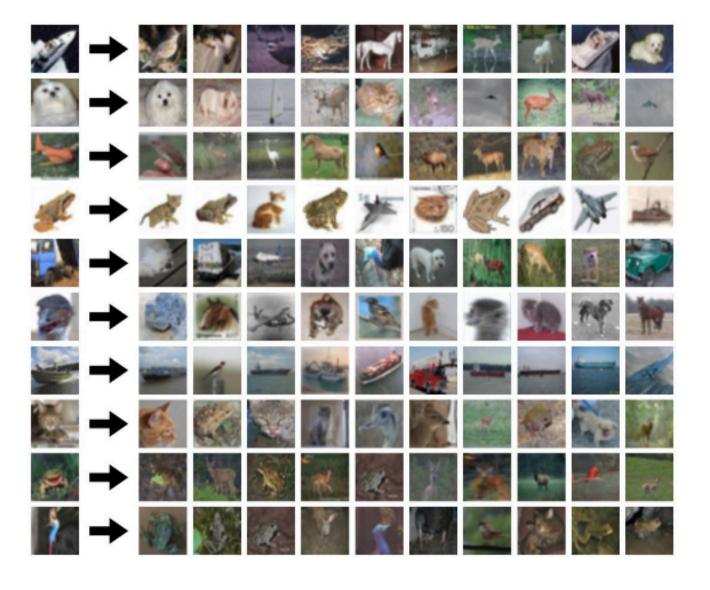
What's the runtime of predict?
O(N)

Ideally, it'd be the other way around:

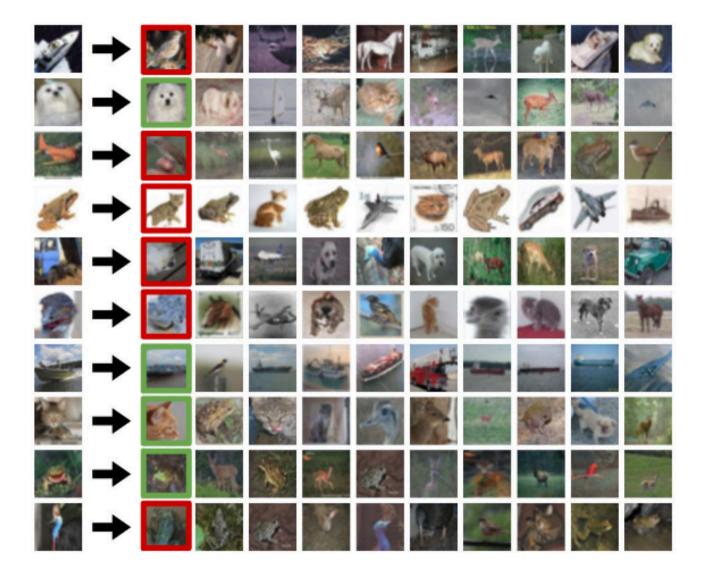
- slow training
- fast prediction

return Ypred

Demo: Nearest Neighbor on MNIST



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

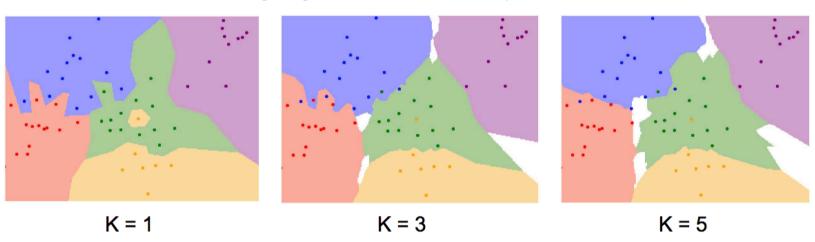


Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

An improvement: K nearest neighbors

K-Nearest Neighbors

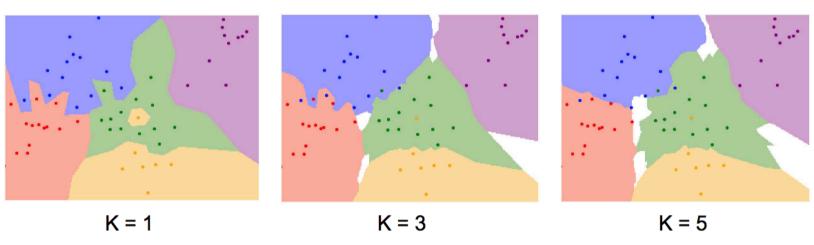
Instead of copying label from nearest neighbor, take **majority vote** from K closest points



An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

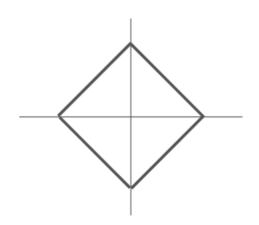


What do we mean by "nearest" anyway?

K-Nearest Neighbors: Distance Metric

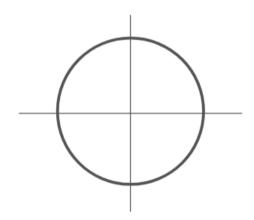
L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



L2 (Euclidean) distance

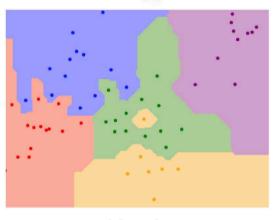
$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

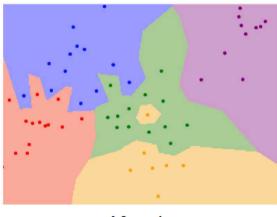
$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



K = 1

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$



$$K = 1$$

Demo

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Simple Image Classification Algorithm

• ϕ : Convert to grayscale and unravel into a vector.

• h: Classify using majority label of the k nearest neighbors according to a distance metric d.

- k and d are hyperparameters. How do we know what to choose?
 - Depends on the problem
 - Usually no principled way to choose trial and error is often the only way.

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train test

Idea #1: Choose hyperparameters

that work best on the data

BAD: K = 1 always works perfectly on training data

	•	•				
Your Dataset						
Idea #2: Split data into train and test, choose hyperparameters that work best on test data BAD: No idea how algorithm will perform on new data						
train		test				
Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test						
train	validation	test]			

Your Dataset

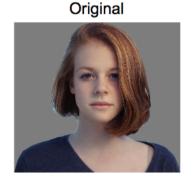
Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative



<u>Original image</u> is CC0 <u>public domain</u>

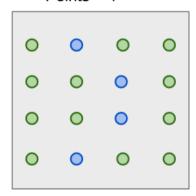
(all 3 images have same L2 distance to the one on the left)

k-Nearest Neighbor on images never used.

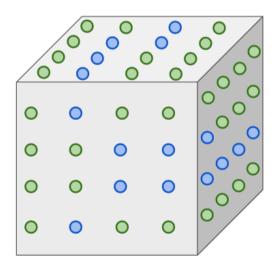
- Curse of dimensionality

Dimensions = 1 Points = 4

Dimensions = 2 Points = 4^2



Dimensions = 3Points = 4^3

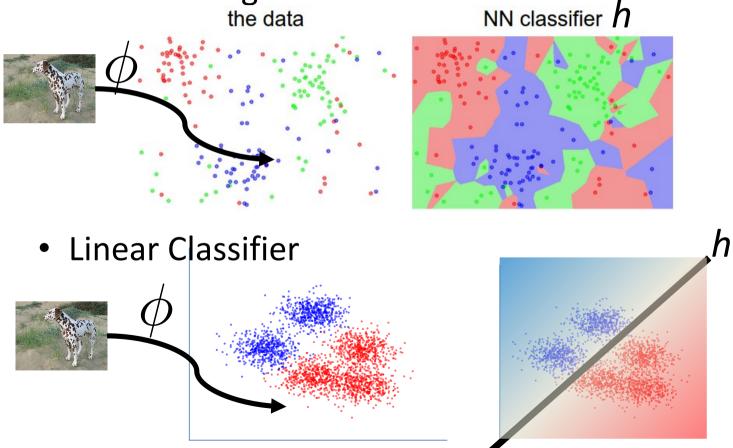


KNN: Bottom Line

- Fast to train but slow to predict
- Distance metrics don't behave well for highdimensional image vectors

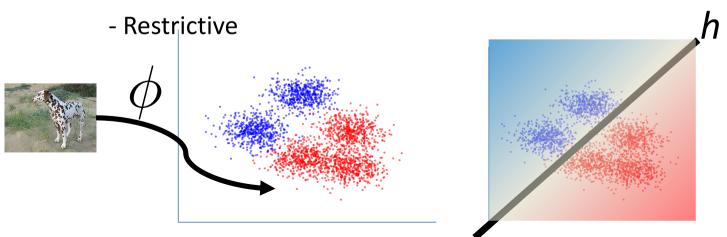
Classifying Images

Nearest Neighbor Classifier



Linear classifiers

- Finding nearest neighbor is slow.
- Basic idea:
 - Training time: find a line that separates the data
 - Testing time: which side of the line is $\phi(\mathbf{x})$ on?
 - +Fast to compute



Some history of the Antedeepluvian Era

- Common pipeline from days of yore:
 - Detect corners and extract SIFT features
 - Collect features into a "bag of features"
 - (if you're feeling fancy) maintain some spatial information
 - Somehow convert feature bag to fixed size
 - Apply linear classifier.
- Key idea: ϕ is designed by hand, while h is learned from data.

Some history of the Antedeepluvian Era

• Key idea: ϕ is designed by hand, while h is learned from data.

- Nowadays: learn both from data "end-toend": image goes in, label comes out.
 - Enabled only recently by bigger
 - labeled datasets
 - compute power (GPUs)