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Lecture 12: Transformations
2D Linear and Affine Transformations



Announcements

e To use slip days, send me email after you've
submitted late.



Goals

e Know what is possible with 2D linear transformations:
(scale, shear, rotation)

e Understand the motivation and math behind
homogeneous coordinates.

e Know what is possible with 2D affine transformations:
(all of the above, plus translation)



Running motivational example:

Panorama Stitching




+ +
linear, affine, or projective

transformations
1. How do we describe the transformation?
2. How do we find an accurate transformation?

3. How do we actually warp the image?
— inverse warping
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Parametric (global) Warping

e Apply the same function to all coordinates.

= (x,Y) Ttransforms image coorc//nates p’ = (x\y’)

x', y' =T(x,y) /\_:’:/\
/
Self-imposed restriction: T is a matrix. ZB, _ |tz |
I— Y to1 too| |y

What can we do with this?
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2x2 Matrices
Nl

A 2x2 matrix can represent all possible
linear transformations on input coordinates.

;

(each output coordinate = linear function of input coordinates)
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Scale
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Shear
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Reflection
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Rotation
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Translation
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Today's Problems

1. What's the fewest correspondences you could use to
(unambiguously) find a 2x2 linear transformation T?

2. Come up with a matrix that represents a translation.




Matrices can't translate.

We'll use a clever math hack to make them do it anyway:

Homogeneous Coordinates

Use a 3D vector to represent a 2D point.
Always put a 1 in the third dimension.



Matrices can't translate.

We'll use a clever math hack to make them do it anyway:

Homogeneous Coordinates

Use a 3D vector to represent a 2D point.
Always put a 1 in the third dimension.

(P

\ ’V’ _ZB_




|

Matrices can't translate.

We'll use a clever math hack to make them do it anyway:

Homogeneous Coordinates

Use a 3D vector to represent a 2D point.
Always put a 1 in the third dimension.
How do we transform these?
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Interactive Demo

nttps://iis.uibk.ac.at/pub

ic/piater/courses/demos/

nomography/homograp

ny.xhtm|




Affine Transformations

The transformations possible with a 3x3 matrix like this

1 o 43
b1 by bj
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are called affine transformations.
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each input coordinate is an affine
function of the input coordinates

Affine basically means linear plus shift:

f(x, y) = ax + by is linear

f(x,y) = ax + by + cis affine
———me——



Which of these can be done by
a 2D linear transtformation?




Which of these can't be done
by a 2D affine transformation?
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Transtormations: Properties

e Anything you get from matrix multiplication comes
for free!

e Associative!l Composable!
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Linear Transtormations: Properties

e Linear transformations x' a b| 0| x
y'i=|d e| 0|y
w| |0 0 1]w]
e Properties:
—~/| ¢ Lines map to lines
—| o Parallel lines remain parallel
—| e Ratios of lengths along lines are preserved
—1 e Closed under composition linear
<@Origin maps to origin




Aftine Transformations: Properties

o Affine transformations x! a bl c | x
y' =|d e| [y
w|l [0 0 1]w

e Properties:

e Lines map to lines
o Parallel lines remain parallel

« Ratios of lengths along lines are preserved

« Closed under composition linear

Origin does not necessarily map to origin affine
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Warping




Warping

X
We've found the transformation. How do we warp the image?
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Warping




Warping




Forward Warping




Warping

We've found the transformation. How do we warp the image?
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Inverse Warping




Bilinear Interpolation



