Lecture 10: Image Features
Feature Descriptors
Feature Matching
Announcements

• HW2 out. You will be prepared to answer:
 • Problem 1 - now.
 • 3.1-3 - by the end of Tuesday
 • 3.4-5 - by the end of Wednesday
 • 2 and 3.6 - by the end of Friday
 • It's due a week from Wednesday (10/21)
Goals

• Understand the concept of invariance as pertains to feature detectors and feature descriptors

• Know the how and why of the MOPS feature descriptor

• Understand the gist of the SIFT descriptor

• Know how and why to match features using:
 • The SSD metric
 • The ratio test
Running motivational example: Panorama Stitching
Features - Overview

1. Detect
 - detect unique points
 - e.g., using the Harris corner detector

2. Describe
 - describe using invariant representation
 - \(x_2 = [x_1^{(2)}, \ldots, x_d^{(2)}] \)

3. Match
 - match them robustly
Harris Corners: TL;DM

Algorithm:

1. Use Sobel filter to estimate gradients I_x, I_y

2. Compute I_x^2, I_y^2, I_xI_y

3. Filter each with a K x K mean filter

4. Approximate smallest eigenvalue as:
 $$\frac{\det(H)}{\text{tr}(H)}$$

5. Threshold

6. Maximum filter
Two desirable properties:

- **Uniqueness**: features *shouldn't* match if they're from different points in the scene.

- **Invariance**: features *should* match if they do come from the same point in the scene.
Invariance
Invariance: Hard Mode
Invariance: Mars Mode
Invariance: Mars Mode
Invariance

Suppose we're comparing two images of the same scene. What kinds of transformations could relate the two images if:

- They are part of a panorama sequence?
- They were taken at different times of day?
- They were taken by different cameras?
- They were taken from different viewpoints?
Desirable Invariances

• Geometric transformations
 • Rotation, Translation, Scale
 • (some others, more on this later)

• Photometric transformations:
 • brightness shift and scale
 • contrast
Harris detector: invariance

Is the Harris detector invariant to intensity shift?

\[I' = I + 20 \]
Harris detector: invariance

Is the Harris detector invariant to scaling?
Harris detector: invariance

- Invariant to scaling?
Features - Overview

1. Detect
 - detect unique points
 e.g., using the Harris corner detector

2. Describe
 - describe using invariant representation
 e.g., using the MOPS descriptor
 - $x_2 = [x_1^{(2)}, \ldots, x_d^{(2)}]$

3. Match
 - match them robustly
The detector gives me the (x, y) coordinates of a unique-looking point. How should I compare it to other unique-looking points?
Feature Descriptors

Simple starting point: window of pixels around the point.
Feature Descriptors

Starting with a window of pixels, let's add invariances:

- Brightness (scale and/or shift - "affine invariance")
Feature Descriptors

Starting with a window of pixels, let's add invariances:

- Brightness (scale and/or shift - "affine invariance")
- Rotation
Feature Descriptors

Starting with a window of pixels, let's add invariances:

- Brightness (scale and/or shift - "affine invariance")
- Rotation
Feature Descriptors

Starting with a window of pixels, let's add invariances:

- Scale
Feature Descriptors

Starting with a window of pixels, let's add invariances:

• Scale
Feature Descriptors

Starting with a window of pixels, let's add invariances:

- Scale
Multiscale Oriented PatcheS: The MOPS Descriptor

- Scale to 1/5 size
- Rotate to horizontal
- Normalize intensity:
 - subtract mean
 - divide by standard dev
- Run it on a Gaussian pyramid
Fancy, industrial-strength feature descriptors: SIFT

- Take a 16x16 window
- Compute edge orientation at each pixel
- Discard weak edges
- Create a histogram of remaining edge orientations
Scale Invariant Feature Transform: SIFT

Real-deal, industrial-strength feature descriptors.

- Take a 16x16 window
- Compute edge orientation at each pixel
- Discard weak edges
- Create a histogram of remaining edge orientations
- Actually do this for each of 4 quadrants of the window

4 histograms - unroll into vector
SIFT: Example
SIFT: Properties

Remarkably invariant (in practice, if not theory) to:

- Viewpoint, illumination, rotation, scale (via pyramid)
Features - Overview

1. Detect
 detect unique points
e.g., using the Harris corner detector

2. Describe
 describe using invariant representation
e.g., using the MOPS descriptor
 \[x_2 = [x_1^{(2)}, \ldots, x_d^{(2)}] \]

3. Match
 match them robustly
e.g., using the ratio distance
3. Match Features

At this point, a "feature" has:

1. A keypoint: its position in one of the images
2. A descriptor: a vector of numbers that 'captures' its characteristics
Feature Matching

Image 1 features:

Image 2 features:
Matching Algorithm

Take 0

\[F_1 = \text{detect_describe}(\text{img1}) \]

\[F_2 = \text{detect_describe}(\text{img2}) \]

for \(f_1 \) in \(F_1 \):

\[\text{find } f_2 \text{ that minimizes } d(f_1, f_2) \]

\[\text{add } (f_1, f_2) \text{ to matches} \]
But what if we're wrong?

- Answer #1: Threshold on match score
Matching Algorithm

Take 1

F1 = detect_describe(img1)

F2 = detect_describe(img2)

for f1 in F1:
 find f2 that minimizes d(f1, f2)

if d(f1, f2) < T
 add (f1, f2) to matches
Distance Metrics

What should we use for d in d(f1, f2)?
Efficiency Considerations

F1 = detect_describe(img1)

F2 = detect_describe(img2)

for f1 in F1:

 find f2 that minimizes d(f1, f2)

 if d(f1, f2) < T

 add (f1, f2) to matches

1. Basic: scipy.spatial.distance.cdist is nicely optimized
2. Fancy: spatial data structures to do < mn comparisons
A problem with SSD
A problem with SSD
A problem with SSD

\[f_1 \]

\[f_2 \]

\[f_2' \]
We want a metric that gives small distance when features are
• like each other (according to SSD), but
• not like any others
Ratio Test, aka Ratio Distance

Notice: \(f_1 \)'s closest match is still \(f_2 \), but the distance between them is different.
Matching Algorithm
Take 2

F1 = detect_describe(img1)

F2 = detect_describe(img2)

for f1 in F1:

 f2 = closest match according to SSD

 f2' = second-closest match according to SSD

 if SSD(f1,f2) / SSD(f1, f2') < T

 add (f1, f2) to matches
But what if we're wrong?

Decreasing the threshold T gives fewer false positives but also fewer true positives.
But what if we're wrong?

Many good matches, but still a few outliers.