Lecture 7:
Upsampling
Project 1 Overview
More numpy
Announcements
Goals

• Know how to upsample images naively

• Know how to upsample images using reconstruction filters.

 • Understand how to upsample using bilinear interpolation and how it relates to reconstruction filters.

• Get exposed to a bit more numpy
Reconstruction

```python
levels = reverse(levels)
img = levels[0]
for i in 1..len(levels):
    img = upscale_2x(img)
    img += L_i
```
Upsampling

• But how do we make images bigger?

• Again: a naive way and a principled way.

def upscale_2x(img):
 return

levels = reverse(levels)
img = levels[0]
for i in 1..len(levels):
 img = upscale_2x(img)
 img += L_i
Upsampling

- This image is too small for my screen. How do I make it 10x bigger?
Upsampling

- This image is too small for my screen. How do I make it 10x bigger?

- Simple approach: repeat each row and column 10 times
Upsampling: Interpolation

- Another way to look at this: we need to double the sampling rate.
Upsampling: Interpolation

- Another way to look at this: we need to double the *sampling rate*.
- But we don't actually know the continuous function:
Upsampling: Nearest Neighbor
Upsampling: Linear
Upsampling: Linear

A filtering perspective
Upsampling: Nearest Neighbor

A filtering perspective
Upsampling Filters in 2D

1D:

\[h \]

2D:

\[
\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1 \\
\end{array}
\]

"tent filter"
Upsampling by 4X

1. Make 4Hx4W image of zeros.
2. Fill in every 4th pixel
3. Filter*!
 *and multiply by 16
Project 1: Part 1

High pass + Low pass
Project 1: Part 1
Project 1: Part 1
Project 1: Part 2

- Demo
A little more numpy...

• Once more to the playground!