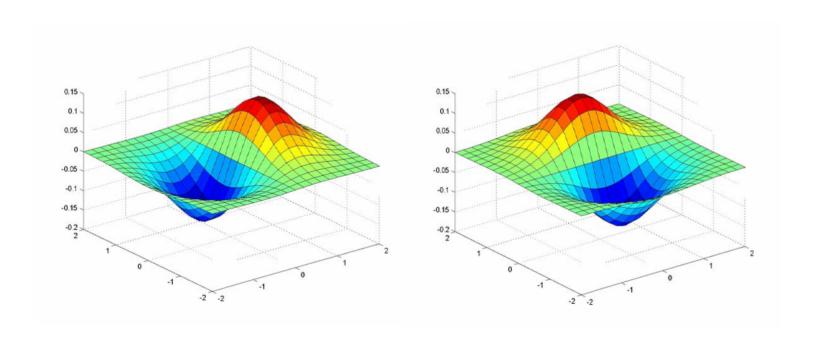
CSCI 497P/597P: Computer Vision



Lecture 4: Gradients and Edge Detection

Announcements

- Week 1 Feedback survey is out on Canvas fill it out by Friday night.
 - It's worth 1 homework point.
 - It's quick: 4 multiple choice questions with an optional comments field.

Goals

- Understand the limitations of linear filtering
- Know how to compute image derivatives using convolution filters
- Understand how the Sobel filter works to detect edges.

Filtering, so far

- Filtering: output pixel depends on input neighborhood
- Linear filtering:
 output pixel is a weighted average of input neighborhood
 (must always the same weights to be linear)
- Cross-correlation is a kind of linear filtering:
 output pixel = weighted average(neighborhood)
- Convolution: cross-correlation, but first flip the kernel horizontally and vertically

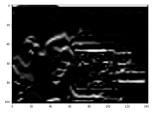
Limitations:

What can't convolution do?

Problem #1 (= #5 from last lecture) - discuss in groups.

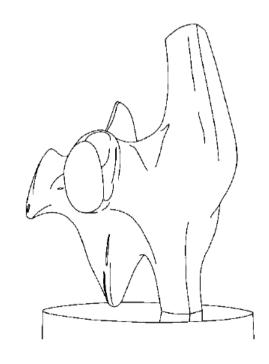
<u>no!</u>

y partial derivative?

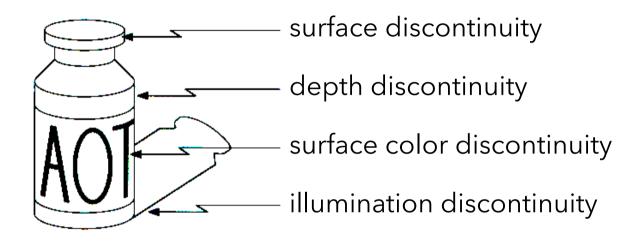


Calculus!?

Edge detection: a classic vision problem.



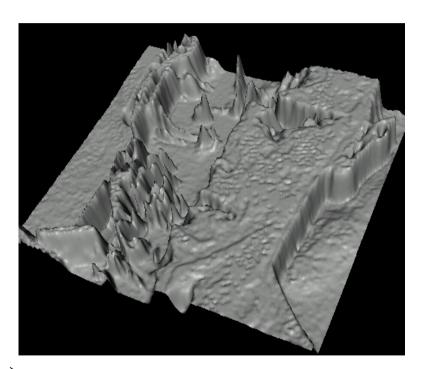
What is an edge?



How do we find them?

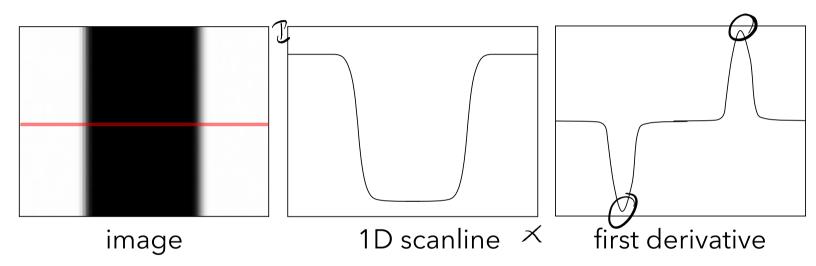


f(x,y) as brightness



f(x,y) as height

Characterizing edges



Multivariable Calculus!?

Partial derivative with respect to x: pretend all other variables are constants and differentiate.

$$f(x,y) = x^2 + Z_7$$

$$\frac{\partial f}{\partial x} = Z_x \qquad \frac{\partial f}{\partial y} = 2$$

Gradient: the vector of all partial derivatives

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Image Derivatives

Images are 2D - have x and y partial derivatives

The image gradient is the vector of partial derivatives:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Image Gradient as Edge Detector

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

What is the edge **strength**?

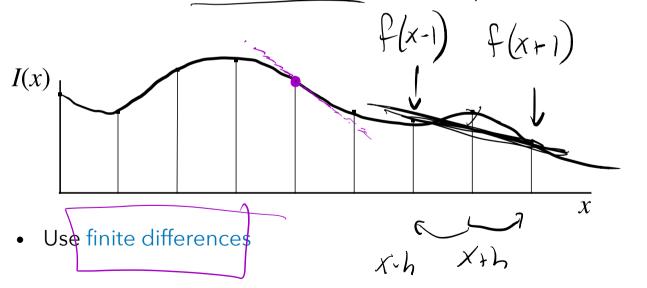
What is the edge **direction**?

$$an' \left(\frac{\partial f_{\partial y}}{\partial f_{\partial x}} \right)$$

ingractice: aten2 (y,x)

Image Derivatives

- How do we differentiate a discrete (sampled) image?
 - Reconstruct a continuous <u>function</u> and compute the derivative



Derivative Filters

- How do we differentiate a discrete digital image?
 - Use finite differences

Example image:

0	0	1
0	0	1
0	1	1

Candidate derivative filters:

not centered

0	0	0
)	- l	D
0	0	O

0	1	0
0	-1	0
0	0	O

centered

0	0	B
l	0	-1
O	0	0

G	-1	B
O	0	G
0	1	9

Problems 2-3: Compute a Derivative

- Same groupwork routine as usual.
- If your group has a question or is stuck, @mention me in your group's text channel.

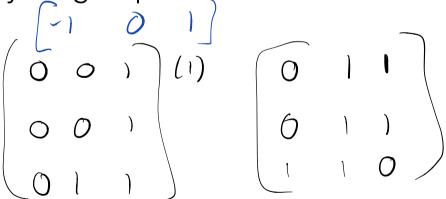
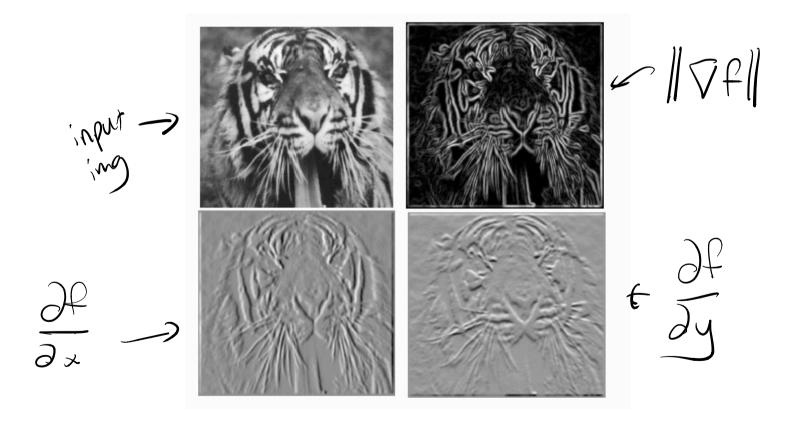
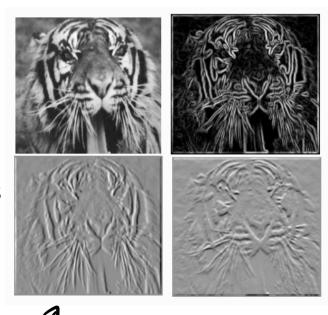


Image Gradient: Visually

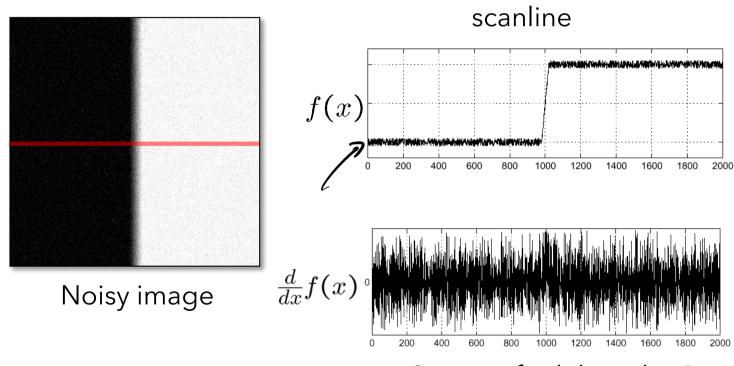


Aside: why are the derivatives grayish, not blackish?

- Images are nonnegative
- Derivatives can be negative!
- Scale and shift derivative values to display in the range 0-255
 - Gray is zero, darker is negative, lighter is positive

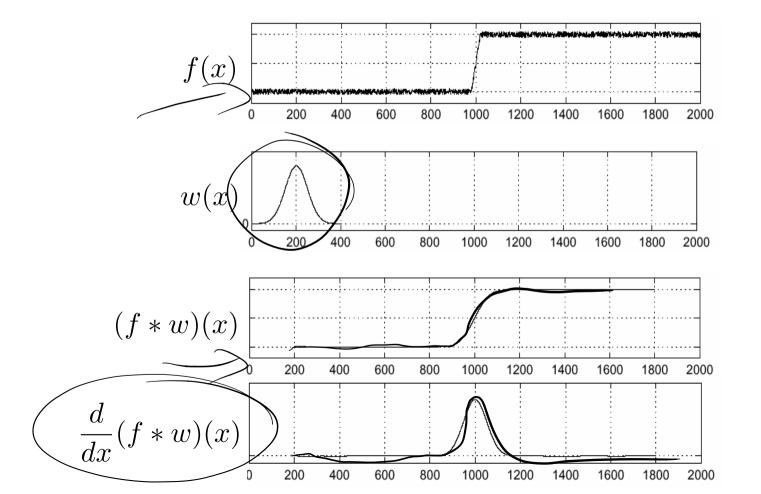


Images (still) aren't perfect



Can you find the edge?

A solution: smooth it first



An Edge Detection Filter

Blur, then take the derivative:

0	0	0
-1	0	1
0	0	0

An Edge Detection Filter

*

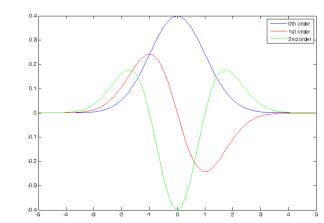
• Blur, then take the derivative:

0	0	0
-1	0	1
0	0	0

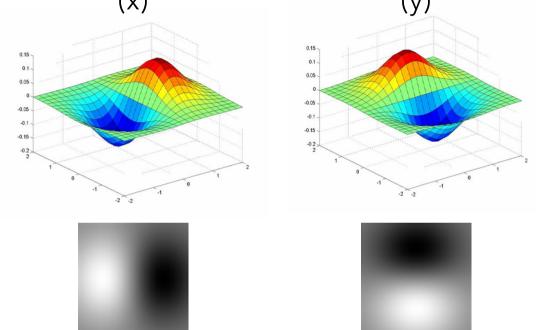
Or, do the composition in the continuous domain then build a discrete approximation:

$$G_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

$$G'_{\sigma}(x) = \frac{d}{dx} G_{\sigma}(x) = -\frac{1}{\sigma} \left(\frac{x}{\sigma}\right) G_{\sigma}(x)$$



Derivative-of-Gaussian Filter

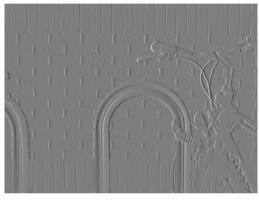


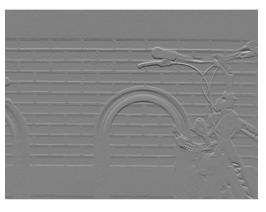
Sobel filter: a 3x3 approximation of the DoG:

	1	0	-1
<u>1</u> 8	2	0	-2
0	1	0	-1

	-1	-2	-1
$\frac{1}{8}$	0	0	0
	1	2	1

Sobel filter: example





input

x sobel filtered

y sobel filtered

Sobel filter: example

magnitude of sobel gradient

Edge Detection

- Fancier edge detectors exist, to try to:
 - more precisely localize the edges (sub-pixel)
 - detect only "salient" edges

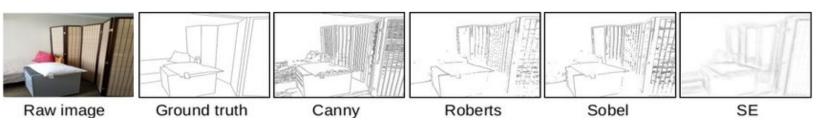


Figure source: Sun et al.: Structural Edge Detection: A Dataset and Benchmark

Questions?

Problem 4

• Derive the Sobel filter for yourself.