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Announcements

e HW1 is out today

« Copvers filtering and convolution

e Duein 1 week (10pm next Tuesday)



Goals

Understand the distinction between cross-correlation and
convolution.

Know the properties of cross-correlation and convolution:

 Linearity and shift-invariance (both)
Associativity and commutativity (convolution only)

Understand the design of several common image filters:
e Box blur and Gaussian blur
« Sharpening

Understand the limitations of linear filtering



Computing Cross-Correlation

g = f & W weights, or
/ \ filter, or

output image
kernel

Input image

for x = 0 to w:
for y = 0 to h:
for i in -k to k:
for j in -k to k: .
out[x,y] += w[i,]] * in[x+i, y+]]
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A bit of practice

In groups: work on Problems #1-4

e Problems are linked from the course webpage
on the Schedule table

e Write answers in your Google Doc
(pinned in group Discord channels)
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Questions remain

e What properties does this operator have?

e What can and can't this operator do?



A shift filter

Cross-correlate the image f with the kernel w.

Use "same" output size, with zero-padding for out-of-bounds values.




Cross-correlation vs Convolution

o Cross-correlation: 9=/ ®w

k k
glzy)= > > w(i,j)f(x+iy+7)

i=—k j=—k T 1

o Convolution: g = f@ﬂ

glz.y)= > > w(i,j)f(x—iy—j)

i=—k j=—k

These are related: [ % ) = g® ﬁw(ﬁi\/ﬁ(w})




Properties

Assume: fis an image; w and v are filters; s, t are scalars.
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What can we do with this?
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|dentity filter: output = input



What can we do with this?




What can we do with this?

left shift



What can we do with this?




What can we do with this?

mean filter, or

box blur



Blurring: Another example

Notice: lattice-like texture

What motivated the mean filter?



Blurring: Another example

Notice: lattice-like texture
What motivated the mean filter?

ldea: the closer the pixel, the more likely it is to be similar



Gaussian Blur

 |dea: weight closer pixelsymore heavily using a
Gaussian kernel:

This is a bivariate (2D) Gaussian function:
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Gaussian Blur

e ldea: weight closer pixels more heavily using a /

Gaussian kernel:
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3x3 approximation
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This is a bivariate (2D) Gaussian function:
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Gaussian Filters

.

O =1 pixel O =5 pixels O =10 pixels O =30 pixels




Mean vs. Gausman




Composing Filters

e Recall associativity:




Sharpening!?

e What gets removed when we blur?
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Sharpening!?

« What gets removed when we blur?




Sharpening

Before After




Sharpening: once more with




Sharpening: once more with

mathing
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Sharpening: once more with
mathing
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Effects of Sharpening
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Limitations:
What can't convolution do?

Problem #5 - discuss in groups.
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e Threshold?

e y partial derivative?




