CSCI 497P/597P: Computer Vision

Lecture 3: Convolution and its Properties

CSCI 497P/597P: Computer Vision

Lecture 3: Convolution and its Properties

Announcements

- HW1 is out today
 - Converse filtering and convolution
 - Due in 1 week (10pm next Tuesday)

Goals

- Understand the distinction between cross-correlation and convolution.
- Know the properties of cross-correlation and convolution:
 - Linearity and shift-invariance (both)
 Associativity and commutativity (convolution only)
- Understand the design of several common image filters:
 - Box blur and Gaussian blur
 - Sharpening
- Understand the limitations of linear filtering

Computing Cross-Correlation

```
g = f \otimes w \underset{\text{filter, or}}{\smile} \text{weights, or}
 output image
                                  kernel
                input image
for x = 0 to w:
  for y = 0 to h:
     for i in -k to k:
        for j in -k to k:
          out[x,y] += w[i,j] * in[x+i, y+j]
```

Computing Cross-Correlation

```
g = f \otimes w \underset{\text{filter, or}}{\smile} \text{weights, or}
 output image
                                  kernel
                input image
for x = 0 to w:
  for y = 0 to h:
     for i in -k to k:
        for j in -k to k:
          out[x,y] += w[i,j] * in[x+i, y+j]
```

A bit of practice

In groups: work on Problems #1-4

- Problems are linked from the course webpage on the Schedule table
- Write answers in your Google Doc (pinned in group Discord channels)

Questions remain

- What happens at the edges?
- What properties does this operator have?
- What can and can't this operator do?

A shift filter

Cross-correlate the image f with the kernel w.

Use "same" output size, with zero-padding for out-of-bounds values.

1	2	1
1	3	1
0	1	3

0	0	0
0	0	1
0	0	0

f

W

Cross-correlation vs Convolution

• Cross-correlation: $g = f \otimes w$

$$g(x,y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j) f(x+i,y+j)$$

• Convolution: g = f * w

$$g(x,y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j) f(x - i, y - j)$$

These are related:

$$F * W = F \otimes fliphorz(flipvert(W))$$

Properties

Assume: f is an image; w and v are filters; s, t are scalars.

Cilter ing = Shifting, filter Shift result

Shift invariance (both)
$$f(x,y) \otimes w = [f(x-s,y-t) \otimes w)](x-s,y-t)$$

Linearity (both) and
$$(f \otimes w) + (f \otimes v) = f \otimes (w + v)$$

 $(f \otimes sw) = s(f \otimes w)$

Commutativity (conv only)
$$f * w = w * f$$

Expensive .

Associativity (conv only) $(f * w) * v = f * (w * v)$

	0	0	(
\geqslant	0	1	(
	0	0	(

Identity filter: output = input

left shift

1	1	1	1	
$\star \frac{1}{2}$	1	1	1	
9	1	1	1	

mean filter, or box blur

Blurring: Another example

Notice: lattice-like texture

What motivated the mean filter?

Blurring: Another example

Notice: lattice-like texture

What motivated the mean filter?

Idea: the closer the pixel, the more likely it is to be similar

Gaussian Blur

Idea: weight closer pixels more heavily using a

This is a bivariate (2D) Gaussian function:

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)^2}{2\sigma^2}}$$

Gaussian Blur

• Idea: weight closer pixels more heavily using a

Gaussian kernel:

)	2)
<u> </u>	2	4	N
16)	Z)

3x3 approximation

This is a bivariate (2D) Gaussian function:

$$G_{\sigma} = \frac{1}{2\pi\sigma^{2}} e^{-\frac{(x^{2}+y^{2})}{2\sigma^{2}}}$$

Gaussian Filters

Mean vs. Gaussian

Composing Filters

Recall associativity:

Sharpening!?

• What gets removed when we blur?

Sharpening!?

• What gets removed when we blur?

Sharpening

Before After

Sharpening: once more with

mathing

The distribution of
$$\mathbb{Z}$$
 \mathbb{Z} \mathbb

>Sharpening Alter

Sharpening: once more with

mathing

Sharpening: once more with

mathing

0	-1	0
-1	5	-1
0	-1	0

Possible 3x3
Approximation

Effects of Sharpening

Limitations: What *can't* convolution do?

Problem #5 - discuss in groups.

Maximum filter?

• Threshold?

• y partial derivative?

