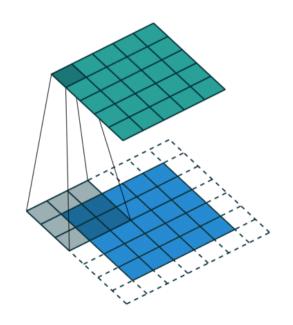
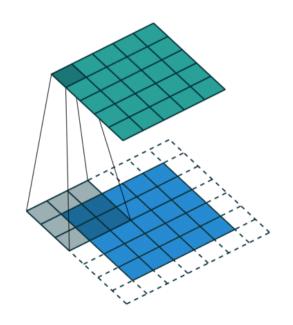
CSCI 497P/597P: Computer Vision



Lecture 2: Image transformations and filtering

CSCI 497P/597P: Computer Vision



Lecture 2: Image transformations and filtering

Goals

- Know how to filter (v) an image by cross-correlating it with a given filter (n)/kernel/weights
- Get a feel for some of the image processing operations that can be accomplished using filtering.
- Know how to handle image borders when filtering:
 - output sizes: full / same / valid
 - out-of-bounds values: zeros, reflection, replication

Last time

Written as a function, we can *transform* the image function to create altered functions (images):

(transforming the range)

$$g(x,y) = f(x,y) + 20$$

(transforming the domain)



$$g(x,y) = f(-x,y)$$

Last time

Written as a function, we can *transform* the image function to create altered functions (images):

(transforming the *range*)

(increase brightness)

$$g(x,y) = f(x,y) + 20$$

(transforming the domain)

$$g(x,y) = f(-x,y)$$

Last time

Written as a function, we can *transform* the image function to create altered functions (images):

(transforming the *range*)

(increase brightness)

$$g(x,y) = f(x,y) + 20$$

(transforming the domain)

(flip horizontally)

$$g(x,y) = f(-x,y)$$

Last time $\frac{1}{2^{x}}$ Make f(x, y) 2 times bigger? g(x, y) = f(x, y)

$$(x,y) = \int_{2}^{\infty} (2x, 2y)$$

Make F (a HxWx3 image) redder?

Increase contrast? $\mathcal{I}(x)$

Real images aren't perfect

Real images are not only sampled, but they often have noise: unwanted variations in measured intensity value.

f(x, y)

Causes of noise (incomplete list):

- electronic variations in sensor chip
- analog-to-digital quantization
- film grain
- cosmic rays

Real images aren't perfect

Real images are not only sampled, but they often have noise: unwanted variations in measured intensity value.

f(x, y)

Causes of noise (incomplete list):

- electronic variations in sensor chip
- analog-to-digital quantization
- film grain
- cosmic rays

often, we can assume that noise is random

Real images aren't perfect

Real images are not only sampled, but they often have noise: unwanted variations in measured intensity value.

f(x, y)

Causes of noise (incomplete list):

- electronic variations in sensor chip
- analog-to-digital quantization
- film grain
- cosmic rays

often, we can assume that noise is random

(other times, we can't but we do anyway)

Denoising

Scenario: you have a camera and this motionless scene. How can you get a less noisy image?

(let's assume that noise is **random**)

Denoising

Scenario: you have a camera and this motionless scene. How can you get a less noisy image?

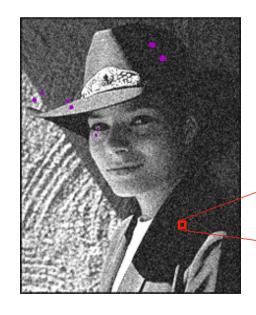
(let's assume that noise is random)

Ideally: average multiple images together

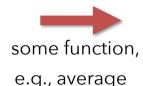
$$g(x,y) = \frac{1}{n} \sum_{i=0}^{n} f_i(x,y)$$

Example: Denoising

Scenario: you're simply given a noisy image. Can you reduce the noise? (still assume that noise is random)



_	10	5	3
	4	5	1
	1	1	7



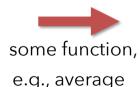
	7	

Example: Denoising

Scenario: you're simply given a noisy image. Can you reduce the noise? (still assume that noise is random)

Next best thing, a heuristic: nearby pixels are *often* the same (ideal) color, so average neighboring pixels together.

10	5	3
4	5	1
1	1	7



	7	

Example: Denoising

Scenario: you're simply given a noisy image. Can you reduce the noise? (still assume that noise is random)

Next best thing, a heuristic: nearby pixels are *often* the same (ideal) color, so average neighboring pixels together.

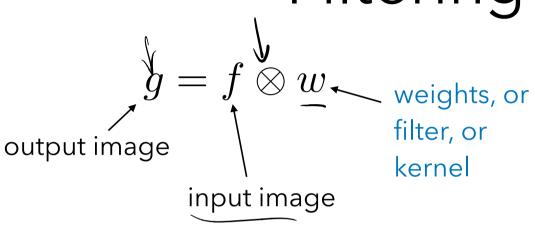
_	10	5	3
	4	5	1
	1	1	7

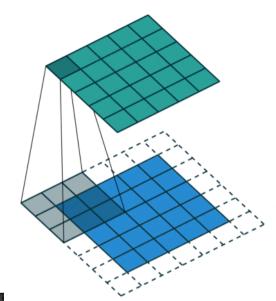
	7	

This is an example of filtering.

We're taking the mean of the neighborhood, so it's called mean filtering.

Filtering

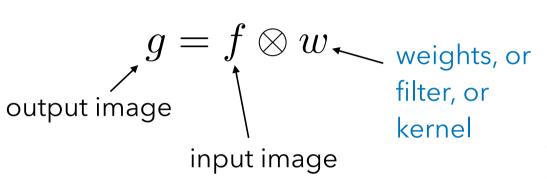


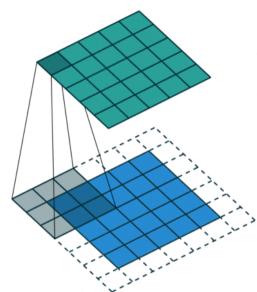


1	1	1	1
$\otimes_{\overline{q}}^{1}$	1	1	1
	Ø I	1	1

W

Filtering





	I	ı	I
\otimes	1	1	1
	0	1	1

W

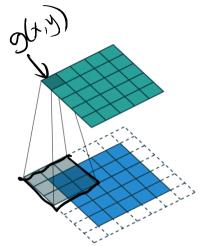
Filtering: Let's play.

Colab notebook playground (also linked from today's lecture on the course webpage):

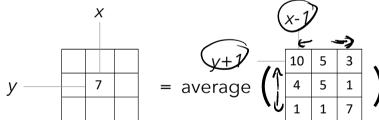
https://colab.research.google.com/drive/ 1KasDni0Km_9HVuQXdARIQh3GS2uchVAZ?usp=sharing

- 1. Notebook demo
- 2. In groups: answer the 6 problems in your group's Google Doc.

Mean filtering: Mathily

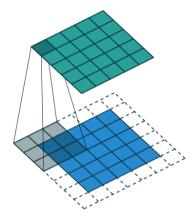


$$g(x), y) = \sum_{i=-1}^{k} \sum_{j=-1}^{1} \sqrt{\frac{1}{9}} f(x+i, y+j)$$

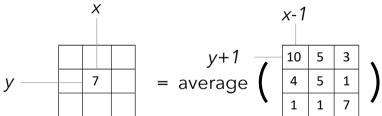


one output pixel = average (3x3 neighborhood of input pixels)

Mean filtering: Mathily



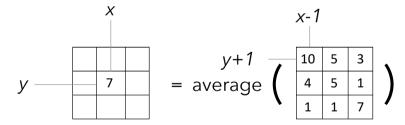
$$g(x,y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} \frac{1}{9} f(x+i,y+j)$$



one output pixel = average (3x3 neighborhood of input pixels)

From a 3x3 mean filter to any size mean filter

$$g(x,y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} \frac{1}{9} f(x+i,y+j)$$

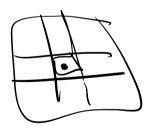


one output pixel = average (3x3 neighborhood of input pixels)

From a 3x3 mean filter to any size mean filter

$$g(x,y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} \frac{1}{(2k+1)^2} f(x+i,y+j)$$

this makes sure we average all values in the neighborhood



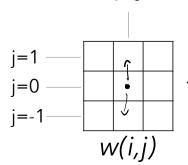
From a 3x3 mean filter to any size mean filter

$$g(x,y) = \sum_{i=-k}^{(k)} \sum_{j=-k}^{k} \frac{1}{(2k+1)^2} f(x+i,y+j)$$

this makes sure we average all values in the neighborhood

Let's generalize to a weighted average.

Also store weights in a 2D array (as in the playground): w(i,j)



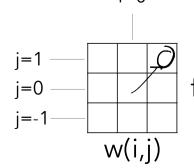
for convenience, (0,0) is at the center

To a weighted average.

$$g(x,y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} \underbrace{w(i,j)}_{j} f(x+i,y+j)$$

this makes sure we average all values in the neighborhood

Also store weights in a 2D array (as in the demo): w(i,j)



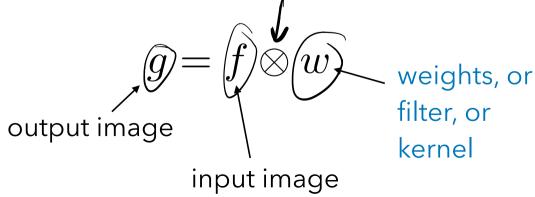
for convenience, (0,0) is at the center

Cross-Correlation

We've just derived the cross-correlation operator.

$$g(x,y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j) f(x+i,y+j)$$

We write this as:

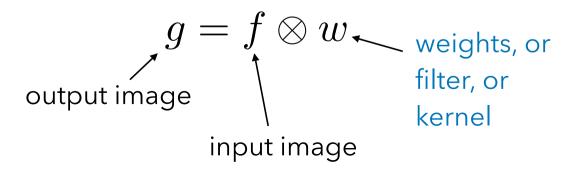


Cross-Correlation

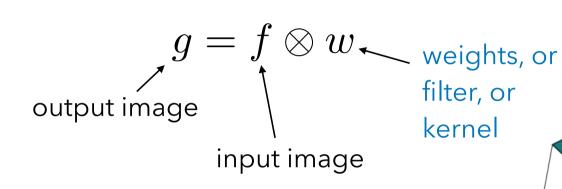
We've just derived the cross-correlation operator.

$$g(x,y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j)f(x+i,y+j)$$

We write this as:



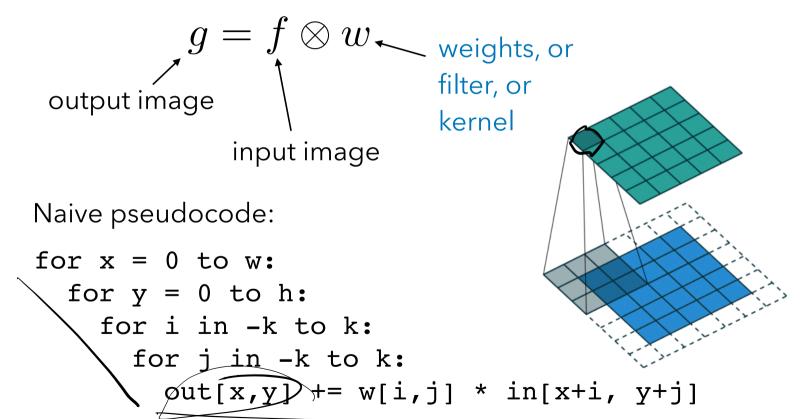
Computing Cross-Correlation



Naive pseudocode:

```
for x = 0 to w:
for y = 0 to h:
   for i in -k to k:
    for j in -k to k:
        out[x,y] \neq w[i,j] * in[x+i, y+j]
```

Computing Cross-Correlation

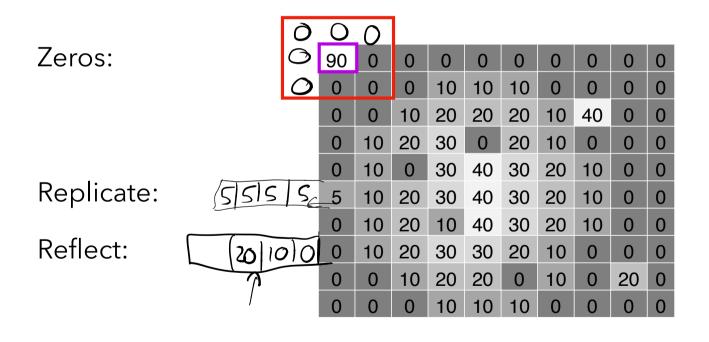


Questions remain

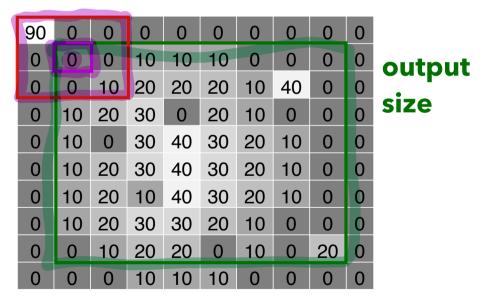
- What happens at the edges?
 - What properties does this operator have?
 - What can and can't this operator do?

Handling Edges - Padding Modes

Possible "padding modes":

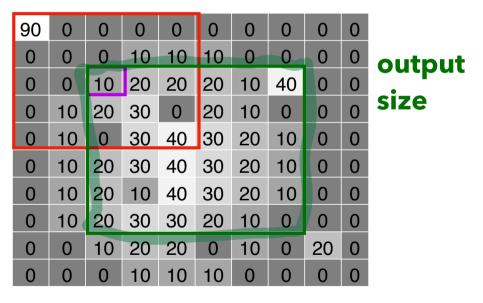


"Valid" (3x3)



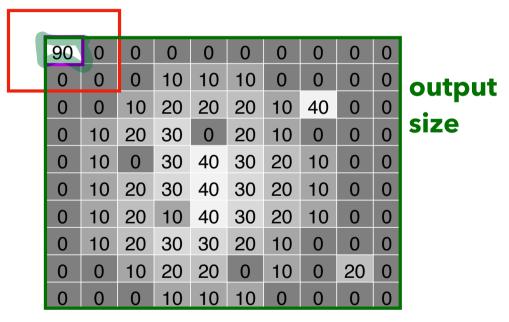
input image

"Valid" (5x5)



input image

"Same"



input image

"Full" (3x3)



