CSCI 497P/597P: Computer Vision

Lecture 2: Image transformations and filtering

CSCI 497P/597P: Computer Vision

Lecture 2: Image transformations and filtering

Goals

Know how to filter (v) an image by cross-correlating
it with a given filter (n)/kernel/weights

Get a feel for some of the image processing
operations that can be accomplished using filtering.

Know how to handle image borders when filtering:

e output sizes: full / same / valid

« out-of-bounds values: zeros, reflection, replication

L ast time

Written as a function, we can transform the image
function to create altered functions (images):

(transforming the range)

(\q \‘\‘OW\&M L

(transforming the domain)

géovme s

L ast time

Written as a function, we can transform the image
function to create altered functions (images):

' bright
(transforming the range) (increase brightness)

(transforming the domain)

L ast time

Written as a function, we can transform the image
function to create altered functions (images):

' bright
(transforming the range) (increase brightness)

(transforming the domain) (flip horizontally)

Lasttime .,)

Make f(x, y) 2 times bigger? 9[%:@) ;)“Q sz) 2ﬂ>

[_—__1
W\u
e
Make F (a HXWx3 image) redder?

_/)
Increase contrast? \L@M

—L(%)

Real images aren't perfect

Real images are not only sampled, but they often have
noise: unwanted variations in measured intensity value.

Causes of noise (incomplete list):

* electronic variations in sensor chip
* analog-to-digital quantization

e film grain

* cosmic rays

Real images aren't perfect

Real images are not only sampled, but they often have
noise: unwanted variations in measured intensity value.

Causes of noise (incomplete list):

* electronic variations in sensor chip
* analog-to-digital quantization

e film grain

* cosmic rays

often, we can assume that noise is random

Real images aren't perfect

Real images are not only sampled, but they often have
noise: unwanted variations in measured intensity value.

Causes of noise (incomplete list):

* electronic variations in sensor chip
* analog-to-digital quantization

e film grain

* cosmic rays

often, we can assume that noise is random

(other times, we can't but we do anyway)

Denoising

Scenario: you have a camera and this motionless scene.
How can you get a less noisy image?

(let's assume that noise is random)

—

Denoising

Scenario: you have a camera and this motionless scene.
How can you get a less noisy image?

(let's assume that noise is random)

Ideally: average multiple images together

g(:c,y) — %Zfz(xvy)

Example: Denoising

Scenario: you're simply given a noisy image. Can you

reduce the noise? (still assume that noise is random)

10

—

some function,

e.g., average

Example: Denoising

Scenario: you're simply given a noisy image. Can you
reduce the noise? (still assume that noise is random)

Next best thing, a heuristic:

e nearby pixels are often the same (ideal) color,
” so average neighboring pixels together.
AR
2y *
f,’/ 7. ©
L AELT - 4|s |1 # 7
Bilmnats B .
IS B 11117 some function,
1;,-‘6.3,".".-?1
et asry y
"‘.f:."-:.\#,;‘ ((5’;“ : €.g., average
el AN ' LR J

Example: Denoising

Scenario: you're simply given a noisy image. Can you
reduce the noise? (still assume that noise is random)

Next best thing, a heuristic:

4 nearby pixels are often the same (ideal) color,
” so average neighboring pixels together.
AR
b$2 *
f,’/ 7. ©
L AELT - 4|s |1 # 7
Bilmnats B .
IS B L some function,
1;,-‘6.3,".".-?1
et asry y
"‘.f:."-:.\#,;‘ ((5’;“ : €.g., average
el AN ' LR J

This is an example of filtering.
We're taking the mean of the neighborhood, so it's called mean filtering.

Filtering

| !
— f X E'\ weights, or

filter, or
kernel

/

output image

Input image
~ N

Filtering

9= f X W weights, or

filter, or
kernel

/

output image

Input image

Filtering: Let's play.
Colab notebook playground

(also linked from today's lecture on the course webpage):

https://colab.research.google.com/drive/
1KasDniOKm_9HVuOXdARIOh3GS2uchVAZ?usp=sharing

1. Notebook demo
2. In groups: answer the 6 problems
in your group's Google Doc.

@105 3
janny

y 7 = average (' 415
U117

one output pixel = average (3x3 neighborhood of input pixels)

Mean filtering: Mathily

1 1

1 . .
glz,y)= > Y of @+ 1y +7)
1=—17=—1
X x-1
y+1 ~——10 |5 |3
)% 7 =average(415 |1)

one output pixel = average (3x3 neighborhood of input pixels)

Generalize!l

From a 3x3 mean filter to any size mean filter

b
1 1
o) =3 S Gl tiyt

i=—1j=-1 &

7o

X x-1
y+1 105 |3
y 7 = average (415 |1)
111|7

one output pixel = average (3x3 neighborhood of input pixels)

Generalize!l

From a 3x3 mean filter to any size mean filter

z——k j——k

this makes sure we average all values in the neighborhood

Generalize!l

From a 3x3 mean filter to any size mean filter

this makes sure we average all values in the neighborhood

Let's generalize to @ weighted average.

Also store weights in a 2D array (as in the playground): w(i,j)
i=0

for convenience, (0,0) is at the center

Il
! o
(G B

Generalize!

To a weighted average.

this makes sure we average all values in the neighborhood

Also store weights in a 2D array (as in the demo): w(i,j)
i=0

j=0 /1| for convenience, (0,0) is at the center

Cross-Correlation

We've just derived the cross-correlation operator.

k k

glz,y)= > > w(i,j)f(z+iy+j)

i=—k j=—k

We write this as:

b
/@: f ®@\ weights, or

. filter, or
output Image
kernel

Input image

Cross-Correlation

We've just derived the cross-correlation operator.

k k

glz,y)= > > w(i,j)f(z+iy+j)

i=—k j=—k

We write this as:

g=J® We__ weights, or
/ \ filter, or

output image
kernel

Input image

Computing Cross-Correlation

g = f & W weights, or
/ \ filter, or

output image
kernel

Input image

Naive pseudocode:

for x = 0 to w:
for y = 0 to h:
for 1 in -k to k:

\for j in -k to k:

out[x,y] += w[i,]J] * in[x+i, y+]]
- T

Computing Cross-Correlation

g = f & W weights, or
/ \ filter, or

output image
kernel

Input image

Naive pseudocode:

for x = 0 to w:
for y = 0 to h:
for 1 in -k to k:

for j in -k to k: e
225§E§§§E>*= wl[i,J] * in[x+i, y+]]

Questions remain

@hat happens at the edges?

e What properties does this operator have?

e What can and can't this operator do?

Handling Edges - Padding Modes

Possible "padding modes":

®
90 0000 0 00

Zeros:
| 10 10 10f0 [0 0 O
20 20 20 10 4000
10" 10 20 30 [0F 20 ----
| 10 B9¥ 30 40 30 20 (10 M0"M0
Replicate: 20 30 40 30 20 10 [0
Reflect:

Handling Edges - Output Sizes

"Valid" (3x3)

20 30 40 30 20 10

20 10 40 30 20 10

20 30 30 20 10 [0

iInput image

Handling Edges - Output Sizes

"Valid" (5x5)

100 10 20 2 20 [0
0 0lo0 1010 100 00 0

iInput image

Handling Edges - Output Sizes

10 20 30 40 30 20 100

10 20 10 40 30 20 10 [0
10 20 30 30 20 10 00"
0 10 20 20f0 10 0 20

iInput image

Handling Edges - Output Sizes

"Full" (3x3)

L
__9ojo o fololafo 0l0 0

"0 30 40 30 20 100 [0
10 20 30 40 30 20 100

0

"0 10 20 10 40 30 20 100 [0
"0 10 20 30 30 20 10[0 [0lo
‘00 10 20 200100 200
0 10 100 0 0 0

inpulhndg—

Handling Edges - Output Sizes

"Full" (5x5)

[

00000000
------== outpit

10 20 20 20 10

0 o
[0 10 20 30 [0l 20 10 fodl0r [0 SiZ€
0 10

"0 30 40 30 20 100 [0

10 20 30 40 30 20 10 Moo

0
"0 10 20 10 40 30 20 10 [0 0

"010 20 30 30 20 10 0"0" 0
‘0010 20 200 100 20 0
‘0/0lo 1010 10/0 000

iInput image

