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Goals

Know how to filter (v) an image by cross-correlating
it with a given filter (n)/kernel/weights

Get a feel for some of the image processing
operations that can be accomplished using filtering.

Know how to handle image borders when filtering:

e output sizes: full / same / valid

« out-of-bounds values: zeros, reflection, replication



L ast time

Written as a function, we can transform the image
function to create altered functions (images):

(transforming the range)
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(transforming the domain)

géovme s




L ast time

Written as a function, we can transform the image
function to create altered functions (images):

' bright
(transforming the range) (increase brightness)

(transforming the domain)




L ast time

Written as a function, we can transform the image
function to create altered functions (images):

' bright
(transforming the range) (increase brightness)

(transforming the domain) (flip horizontally)
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Real images aren't perfect

Real images are not only sampled, but they often have
noise: unwanted variations in measured intensity value.

Causes of noise (incomplete list):

* electronic variations in sensor chip
* analog-to-digital quantization

e film grain

* cosmic rays
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Real images aren't perfect

Real images are not only sampled, but they often have
noise: unwanted variations in measured intensity value.

Causes of noise (incomplete list):

* electronic variations in sensor chip
* analog-to-digital quantization

e film grain

* cosmic rays

often, we can assume that noise is random

(other times, we can't but we do anyway)




Denoising

Scenario: you have a camera and this motionless scene.
How can you get a less noisy image?

(let's assume that noise is random)
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Denoising

Scenario: you have a camera and this motionless scene.
How can you get a less noisy image?

(let's assume that noise is random)

Ideally: average multiple images together

g(:c,y) — %Zfz(xvy)




Example: Denoising

Scenario: you're simply given a noisy image. Can you

reduce the noise? (still assume that noise is random)
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Example: Denoising

Scenario: you're simply given a noisy image. Can you
reduce the noise? (still assume that noise is random)

Next best thing, a heuristic:

e nearby pixels are often the same (ideal) color,
” so average neighboring pixels together.
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Example: Denoising

Scenario: you're simply given a noisy image. Can you
reduce the noise? (still assume that noise is random)

Next best thing, a heuristic:

4 nearby pixels are often the same (ideal) color,
” so average neighboring pixels together.
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This is an example of filtering.
We're taking the mean of the neighborhood, so it's called mean filtering.



Filtering
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Filtering
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Filtering: Let's play.
Colab notebook playground

(also linked from today's lecture on the course webpage):

https://colab.research.google.com/drive/
1KasDniOKm_9HVuOXdARIOh3GS2uchVAZ?usp=sharing

1. Notebook demo
2. In groups: answer the 6 problems
in your group's Google Doc.
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one output pixel = average (3x3 neighborhood of input pixels)



Mean filtering: Mathily

1 1

1 . .
glz,y)= > Y of @+ 1y +7)
1=—17=—1
X x-1
y+1 ~——10 |5 |3
)% 7 =average( 415 |1 )

one output pixel = average (3x3 neighborhood of input pixels)



Generalize!l

From a 3x3 mean filter to any size mean filter

b
1 1
o) =3 S Gl tiyt

i=—1j=-1 &
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X x-1
y+1 105 |3
y 7 = average ( 415 |1 )
111|7

one output pixel = average (3x3 neighborhood of input pixels)



Generalize!l

From a 3x3 mean filter to any size mean filter

z——k j——k

this makes sure we average all values in the neighborhood




Generalize!l

From a 3x3 mean filter to any size mean filter

this makes sure we average all values in the neighborhood

Let's generalize to @ weighted average.

Also store weights in a 2D array (as in the playground): w(i,j)
i=0

for convenience, (0,0) is at the center
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Generalize!

To a weighted average.

this makes sure we average all values in the neighborhood

Also store weights in a 2D array (as in the demo): w(i,j)
i=0

j=0 /1| for convenience, (0,0) is at the center




Cross-Correlation

We've just derived the cross-correlation operator.

k k

glz,y)= > > w(i,j)f(z+iy+j)

i=—k j=—k

We write this as:
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Cross-Correlation

We've just derived the cross-correlation operator.

k k

glz,y)= > > w(i,j)f(z+iy+j)

i=—k j=—k

We write this as:

g=J® We__ weights, or
/ \ filter, or

output image
kernel

Input image



Computing Cross-Correlation

g = f & W weights, or
/ \ filter, or

output image
kernel

Input image

Naive pseudocode:

for x = 0 to w:
for y = 0 to h:
for 1 in -k to k:

\for j in -k to k:

out[x,y] += w[i,]J] * in[x+i, y+]]
- T




Computing Cross-Correlation

g = f & W weights, or
/ \ filter, or

output image
kernel

Input image

Naive pseudocode:

for x = 0 to w:
for y = 0 to h:
for 1 in -k to k:

for j in -k to k: e
225§E§§§E>*= wl[i,J] * in[x+i, y+]]




Questions remain

@hat happens at the edges?

e What properties does this operator have?

e What can and can't this operator do?



Handling Edges - Padding Modes

Possible "padding modes":
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Zeros:
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Reflect:



Handling Edges - Output Sizes

"Valid" (3x3)

20 30 40 30 20 10

20 10 40 30 20 10

20 30 30 20 10 [0

iInput image



Handling Edges - Output Sizes

"Valid" (5x5)
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0 0lo0 1010 100 00 0

iInput image



Handling Edges - Output Sizes
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iInput image



Handling Edges - Output Sizes

"Full" (3x3)
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Handling Edges - Output Sizes

"Full" (5x5)
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