CSCI 497P/597P: Computer Vision Scott Wehrwein

Convolutional Neural Netwo Training Tricks and Architect

Reading

- http://cs231n.github.io/neural-networks-3/
- <u>http://cs231n.github.io/convolutional-</u> <u>networks/</u>

Announcements

- HW2 Out
 - Optional
 - Due Thursday night
 - Review in class Friday
- Today's OH extended to a bit before 5
- I'll extend OH tomorrow if there's demand.

Goals

- Understand some of the common tricks and strategies for designing and training neural networks:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Ensembling
 - Dropout

Training CNNs

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Ensembling
 - Dropout

Data Augmentation

- When >1 million training images is not enough:
 - Randomly Flip, Scale, Crop, Rotate, Perturb brightness and color
 - Example:

```
import torchvision.transforms as tvt
transforms = tvt.Compose([
    tvt.Resize((224,224)),
    tvt.ColorJitter(hue=.05, saturation=.05),
    tvt.RandomHorizontalFlip(),
    tvt.RandomRotation(20, resample=PIL.Image.BILINEAR)
])
```

Data Augmentation

Training CNNs

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Ensembling
 - Dropout

- Q: what happens when W=constant init is used?

First idea: Small random numbers (gaussian with zero mean and 1e-2 standard deviation)

W = 0.01* np.random.randn(D,H)

- First idea: **Small random numbers** (gaussian with zero mean and 1e-2 standard deviation)

W = 0.01* np.random.randn(D,H)

Works ~okay for small networks, but problems with deeper networks.

Lets look at some activation statistics

E.g. 10-layer net with 500 neurons on each layer, using tanh non-linearities, and initializing as described in last slide.

```
# assume some unit gaussian 10-D input data
D = np.random.randn(1000, 500)
hidden_layer_sizes = [500]*10
nonlinearities = ['tanh']*len(hidden_layer_sizes)
```

```
act = {'relu':lambda x:np.maximum(0,x), 'tanh':lambda x:np.tanh(x)}
Hs = {}
for i in xrange(len(hidden_layer_sizes)):
    X = D if i == 0 else Hs[i-1] # input at this layer
    fan_in = X.shape[1]
    fan_out = hidden_layer_sizes[i]
    W = np.random.randn(fan_in, fan_out) * 0.01 # layer initialization
    H = np.dot(X, W) # matrix multiply
    H = act[nonlinearities[i]](H) # nonlinearity
    Hs[i] = H # cache result on this layer
```

```
# look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer_means = [np.mean(H) for i,H in Hs.iteritems()]
layer_stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems():
    print 'hidden layer %d had mean %f and std %f' % (i+1, layer means[i], layer stds[i])
```

plot the means and standard deviations
plt.figure()
plt.subplot(121)
plt.plot(Hs.keys(), layer_means, 'ob-')
plt.title('layer mean')
plt.subplot(122)
plt.plot(Hs.keys(), layer_stds, 'or-')
plt.title('layer std')

```
# plot the raw distributions
plt.figure()
for i,H in Hs.iteritems():
    plt.subplot(1,len(Hs),i+1)
    plt.hist(H.ravel(), 30, range=(-1,1))
```

input layer had mean 0.000927 and std 0.998388 hidden layer 1 had mean -0.000117 and std 0.213081 hidden layer 2 had mean -0.000001 and std 0.047551 hidden layer 3 had mean -0.000002 and std 0.010630 hidden layer 4 had mean 0.000001 and std 0.0002378 hidden layer 5 had mean 0.000002 and std 0.000532 hidden layer 6 had mean -0.000000 and std 0.000119 hidden layer 7 had mean 0.000000 and std 0.000026 hidden layer 8 had mean -0.000000 and std 0.000006 hidden layer 9 had mean -0.000000 and std 0.000000 hidden layer 10 had mean -0.000000 and std 0.000000

input layer had mean 0.000927 and std 0.998388 hidden layer 1 had mean -0.000117 and std 0.213081 hidden layer 2 had mean -0.000001 and std 0.047551 hidden layer 3 had mean -0.000002 and std 0.010630 hidden layer 4 had mean 0.000001 and std 0.002378 hidden layer 5 had mean 0.000002 and std 0.000532 hidden layer 6 had mean -0.000000 and std 0.000019 hidden layer 7 had mean 0.000000 and std 0.000026 hidden layer 8 had mean -0.000000 and std 0.0000026 hidden layer 9 had mean 0.000000 and std 0.000000 hidden layer 10 had mean -0.000000 and std 0.000000

Activations become zero!

What do the gradients look like?

W = np.random.randn(fan_in, fan_out) / np.sqrt(2/fan_in)

input layer had mean 0.000501 and std 0.999444 hidden layer 1 had mean 0.562488 and std 0.825232 hidden layer 2 had mean 0.553614 and std 0.827835 hidden layer 3 had mean 0.545867 and std 0.813855 hidden layer 4 had mean 0.565396 and std 0.826902 hidden layer 5 had mean 0.547678 and std 0.826902 hidden layer 6 had mean 0.587103 and std 0.860035 hidden layer 7 had mean 0.596867 and std 0.870610 hidden layer 8 had mean 0.623214 and std 0.889348 hidden layer 9 had mean 0.567498 and std 0.845357 hidden layer 10 had mean 0.552531 and std 0.844523 # fan_in = numel(input)

fan_out = numel(output)

Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

...

"you want zero-mean unit-variance activations? just make them so."

consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

this is a vanilla differentiable function...

"you want zero-mean unit-variance activations? just make them so."

D

1. compute the empirical mean and variance independently for each dimension.

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

Problem: do we necessarily want a zeromean unit-variance input?

[loffe and Szegedy, 2015]

Normalize:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

And then allow the network to squash the range if it wants to:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

Details in the batchorm paper: https://arxiv.org/pdf/1502.03167.pdf

Note, the network can learn: $\gamma^{(k)} = \sqrt{\text{Var}[x^{(k)}]}$ $\beta^{(k)} = \text{E}[x^{(k)}]$ to recover the identity mapping.

- At test time, the answer shouldn't depend on the batch:
 - Instead, use a global average (computed during training) of activation means and variances

BatchNorm2d

CLASS torch.nn.BatchNorm2d(*num_features*, *eps=1e-05*, *momentum=0.1*, *affine=True*, *track_running_stats=True*)

[SOURCE]

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

TL;DR: Using batch normalization speeds up training and makes it less sensitive to weight initialization.

Training CNNs

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Ensembling
 - Dropout

Model Ensembles

- 1. Train multiple independent models
- 2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Why would this work?

- Using different random initializations results in training arriving at different local minima.
- Remarkable (empirical) fact: performance of each one is similar!

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016 Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017 Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016 Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017 Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Cyclic learning rate schedules can make this work even better!

Training CNNs

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Ensembling
 - Dropout

Regularization: Recall

- Penalizes large weights to prevent the model from fitting training data *too* closely (overfitting)
 Helps network generalize to unseen data
- L2 regularization forces parameters to be used "equally"
 - parameters with similar magnitudes will have a lower regularization cost than mostly zero with a few huge values.
- Another way to force the network to use all its parameters equally: randomly drop parameters each training iteration!

Another way to force the network to use all its parameters equally: **randomly drop parameters** each training iteration!

Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

Regularization: Dropout

p = 0.5 # probability of keeping a unit active. higher = less dropout

```
def train_step(X):
    """ X contains the data """
```

```
# forward pass for example 3-layer neural network
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = np.random.rand(*H1.shape)
```

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

Example forward pass with a 3-layer network using dropout

Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation; Prevents co-adaptation of features

Regularization: Dropout

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large **ensemble** of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks! Only ~ 10^{82} atoms in the universe...

Dropout: Test time

def predict(X):

ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always => We must scale the activations so that for each neuron: <u>output at test time</u> = <u>expected output at training time</u>

More common: "Inverted dropout"

p = 0.5 # probability of keeping a unit active. higher = less dropout

Training CNNs

- Most of these things are practical heuristics that have been empirically discovered to work well:
 - Batched training
 - Preprocessing / data augmentation
 - Momentum
 - Learning rate decay
 - Weight initialization and batch normalization
 - Ensembling
 - Dropout

Next Up: CNN Architecture Tour

- What happened since AlexNet?
- There's a general theme:

Review: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture:

CONV1 MAX POOL1 NORM1 CONV2 MAX POOL2 NORM2 CONV3 CONV4 CONV5 Max POOL3 FC6 FC7 FC8

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x26] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x26] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
- manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Not deeper! Just better tuned

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

WE NEED TO GO DEEPER

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet) -> 7.3% top 5 error in ILSVRC'14

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

Softmax

FC 1000

FC 4096

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: $3 * (3^2C^2)$ vs. 7²C² for C channels per layer

FC 4096

FC 4096

(not counting biases) INPUT: [224x224x3] memory: 224*224*3=150K params: 0 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass) TOTAL params: 138M parameters

VGG16

[Simonyan and Zisserman, 2014]

Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

