CSCI 497P/597P: Computer Vision

Scott Wehrwein

l FC 4096 I

1 Softmax |
| FC 1000 ||
[FC 409]

Convolutional Neural Netwao
Training Tricks and Architect

Reading

e http://cs231n.github.io/neural-networks-3/

e http://cs231n.github.io/convolutional-
networks/

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

Announcements

* HW2 Out
— Optional
— Due Thursday night
— Review in class Friday

* Today’s OH extended to a bit before 5
e |’ll extend OH tomorrow if there’s demand.

Goals

e Understand some of the common tricks and
strategies for designing and training neural
networks:

data augmentation
— Weight initialization and batch normalization

— Ensembling
— Dropout

Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing /
— Momentum

— Learning rate decay

Data Augmentation

* When >1 million training images is not
enough:

— Randomly Flip, Scale, Crop, Rotate, Perturb
brightness and color

— Example:

import torchvision.transforms as tvt
transforms = tvt.Compose(]|
tvt.Resize((224,224)),
tvt.ColorJitter (hue=.05, saturation=.05),
tvt.RandomHorizontalFlip(),
tvt.RandomRotation (20, resample=PIL.Image.BILINEAR)

Data Augmentation

»

o
\,
*‘\

0

. PN
” Al)
Ei \

}'
'1 Bl
9 ; A

*

o,
a

&
e

Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum

— Learning rate decay

Weight Initialization

- Q: what happens when W=constant init is used?

output layer
input layer
hidden layer

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Weight Initialization

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Weight Initialization

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W = 0.01* np.random.randn(D,H)

Works ~okay for small networks, but problems with
deeper networks.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Lets look at
some
activation
statistics

E.g. 10-layer net with
500 neurons on each
layer, using tanh
non-linearities, and
initializing as
described in last slide.

assume some unit gaussian 10-D input data

D = np.random.randn(1000, 500)

hidden layer sizes = [508]*18

nonlinearities = ['tanh']*len(hidden layer sizes)

act = {'relu’':lambda x:np.maximum(0,x), 'tanh’':lambda x:np.tanh(x)}
Hs = {}
for i in xrange(len(hidden layer sizes)):
X =D if i == © else Hs[i-1] # input at this layer
fan_in = X.shape[1]
fan out = hidden layer sizes[i]
W = np.random.randn(fan in, fan out) * 8.81 # layer initialization

H = np.dot(X, W) # matrix multiply
H = act[nonlinearities[i]](H) # nonlinearity
Hs[i] = H # cache result on this layer
look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean{H) for i,H in Hs.iteritems()]
layer stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems():
print 'hidden layer %d had mean %f and std %f' % (i+l, layer means[i], layer stds[i])

plot the means and standard deviations
plt.figure()

plt.subplot(121)

plt.plot(Hs.keys(), layer means, ‘ob-')
plt.title('layer mean')

plt.subplot(122)

plt.plot(Hs.keys(), layer stds, 'or-')
plt.title('layer std')

plot the raw distributions

plt.figure()

for i,H in Hs.iteritems():
plt.subplot(1l,len(Hs),i+1)
plt.hist(H.ravel(), 30, range=(-1,1))

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

input layer had mean ©.000927 and std ©.998388

hidden layer 1 had mean -0.800117 and std ©.213081
hidden layer 2 had mean -©.000001 and std ©.847551
hidden layer 3 had mean -9.000002 and std ©.610630
hidden layer 4 had mean 0.080001 and std 0.002378
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -©.800000 and std ©.000119
hidden layer 7 had mean 0.080000 and std ©.000026
hidden layer 8 had mean -0.000000 and std ©.000006
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 16 had mean -0.000000 and std 0.000000
- layer mean ayer std
904 P g —— - - -
- 004
-0 20010 ..‘.
SOO00 25000 il] 25090 150400 15aq00) 20)
0000 200000 20040 20230 20040 02400 N 2000 20040
0200) 3 1508 ki 0g 15000 15090
""" 10040 e G | (BT h Bl & ! WS W0
10300 0300) [0400 00 S 0400 SO0 SO300
L 0500 10-16-0% 00 1:1-"’1:-:5) 1]-{1:---‘ 01 0-0 b 10 =100 5 =1.0-0 5 1,-—:';:;-1 £5 1

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

input layer had mean ©.000927 and std ©.998388

hidden layer 1 had mean -0.800117 and std ©.213081
hidden layer 2 had mean -©.000001 and std ©.847551
hidden layer 3 had mean -9.000002 and std ©.610630 . .
hidden layer 4 had mean 0.060001 and std 0.002378 Activations become zero!
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -©.800000 and std ©.000119
hidden layer 7 had mean 0.080000 and std ©.000026 . .
hidden layer 8 had mean -9.800000 and std ©.800006 What do the gradients look like?
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000080 and std 0.000000
- layer mean ayer std
204 P gy —— — - - -
-0 20010 ..‘.
25000 il] 250900 150400 13400))])
200000 2004 20030 e i) X 2000 20040
) 5000 150000 2 1500 15008 15040
000 e i 080 o 03402 1001 ! Wops 040
0300 2] 0400 00 Siv S04 01 LT 1 50400
-] 10=1.0-4] ljl-':l:-If) x]—cl‘- Ili' -0 b 140 g :L-:] 00500 05 10-10-0%500 05 1 l—;‘;: - 1

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

W =

Weight Initialization

np.random.randn(fan in, fan out) / np.sqrt(2/fan in)

input layer had mean ©.000501 and std 0.999444 # fan_ln - numel (lnPUt)
hidden layer 1 had mean ©.562488 and std 0.825232 -
hidden layer 2 had mean 8.553614 and std 0.827835 # fan_out numel (outPUt)
hidden layer 3 had mean ©.545867 and std ©.813855
hidden layer 4 had mean 8.565396 and std ©.826902
hidden layer 5 had mean ©.547678 and std ©.8340892
hidden layer 6 had mean ©.587183 and std 0.8600835
hidden layer 7 had mean ©.596867 and std ©.870616
hidden layer 8 had mean ©.623214 and std ©.889348
hidden layer 9 had mean ©.567498 and std ©.845357
hidden layer 10 had mean ©.552531 and std ©.844523
AYEr mear ayer std
L]
=1 o
- -
.-'7
\ -
” . .
3 /
6 [~ - »
. /
-
X : - “ -
_____ 20 2 _;1_| ol)
e o 4
150 15000 150600 150
10000 100008 I W0og0 1004)

:SzliﬁaéfAJFEé'i‘iEF::e:i:"Ii_"i;'jUstin Johnson, & Serena Yeung

Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Batch Normalization [loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

(k) _ E[(%)
(k) — & =]

V/ Var[z(F)] this is a vanilla
differentiable function...

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Batch Normalization

[loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

N X

AAA

Yvy

1. compute the empirical mean and
variance independently for each

dimension.

2. Normalize
(k) _ E[p(k)
:fv\(k) - x [.’E]
v/ Var[z(F)]

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Batch Normalization [loffe and Szegedy, 2015]

|

FC Usually inserted after Fully

BLN _ Connected or Convolutional layers,
1 and before nonlinearity.

tanh
l

FC
l

BN (k) — zF) — E[x(k)]
l k

tanh \/V&l'[l'()]

Problem: do we necessarily want a zero-
mean unit-variance input?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Batch Normalization [loffe and Szegedy, 2015]

Normalize: Details in the batchorm paper:
(https://arxiv.org/pdf/1502.03167.pdf
~(k E[-’I]
7lk) —
k
\/Var[:’j ()] Note, the network can learn:

And then allow the network to squash 7(’€) — \/Var g;(k)]
the range if it wants to:

Bk — E[z(*)]

to recover the identity

Y =o\FIg 4 g

mapping.

At test time, the answer shouldn’t depend on the
batch:

* Instead, use a global average (computed during
training) of activation means and variances

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

https://arxiv.org/pdf/1502.03167.pdf

Batch Normalization

BatchNorm2d

CLASS torch.nn.BatchNorm2d (num_features, eps=1e-05, momentum=0. 1,
affine=True, track_running_stats=True)

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel
dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift.

T = E[z]
v/ Var[z] + €

y= *Y+ B

TL;DR: Using batch normalization speeds up training and
makes it less sensitive to weight initialization.

Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization and batch normalization

Model Ensembles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Why would this work?

* Using different random initializations results in training arriving at
different local minima.

* Remarkable (empirical) fact: performance of each one is similar!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

Single Model

04. Standard LR Schedule [/}}
0.3-
02
0.1 &
0 (
0.1 |)
|\
-02 g \{‘\'_:;s"r"’_"
03
04 r i
50 _ o
a0 E
0 T e %0
20 T20

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

Y - - _—y i 2 he
05+ Single Model A °%7 Snapshot Ensemble = /M i i (L) N, R Spneeip
04. Standard LR Schedule [} 04 Cyclic LR Schedule = ///) == Standard Irschaduling

£ 3 —— (osine annealing with restart Ir 0.1
03] [034 10" | | | | I
02 02 | | | | |
w
0.1 \ 0.1+ * C_é 10" N
04 / 0 V 1q/\ &
-0.14 oy sy 01 » g) r:x; 10°
T b &

03 03 103 I I

0.4 .. = F ! Dl : Model | Maodel | Model | Model | Model | Model

50 e = T 0 B T, = 50 1 2 3 4 5 6
- e ¥ = a0 0 T 4 10 1 1 1 l 1
I e %0 0 e 0 50 100 150 200 250 300
20 = e 20 20 " 20 Epochs

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 CVC“C Iea mmg rate SChedUIGS can
Huang et al, “Snapshot ensembles: train 1, get M for free", ICLR 2017 make thlS Work even better|

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization and batch normalization
— Ensembling

Regularization: Recall

* Penalizes large weights to prevent the model
from fitting training data too closely (overfitting)

— Helps network generalize to unseen data

* L2 regularization forces parameters to be used
“equally”

— parameters with similar magnitudes will have a lower
regularization cost than mostly zero with a few huge
values.

* Another way to force the network to use all its
parameters equally: randomly drop parameters
each training iteration!

Another way to force the network to use all its parameters
equally: randomly drop parameters each training iteration!

Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

pass with a
3-layer network
using dropout

Regularization: Dropout Example forward

def train_step(X):
""" X contains the data

H1 = np.maximum(©, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p

H1 *= Ul

H2 = np.maximum(©, np.dot(W2, H1l) + b2)
U2 = np.random.rand(*H2.shape) < p #

H2 *= U2

out = np.dot(W3, H2) + b3

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

hasanear —)—

has a tail N

T

is furry —X—— . cat
~___—— score

has claws -

mischievous —X——

look

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model
An FC layer with 4096 units has

24096 ~ 10233 possible masks!
Only ~ 108 atoms in the universe...

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Dropout: Test time

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©, np.dot(W2, Hl1l) + b2) * p
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

p=0.5# probability of keeping a unit active. higher = less dropout

def train_step(X):
""" X contains the data """

forward pass for example 3-layer neural network

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # fFirst dropout mask
H1 *= Ul # drop! .
HZ = np.maximum(U, np.dot(WZ, AIJ + bZ) drop 18] forward paSS
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)

nrfarm naramotor indateo f nn chnwn)
pertorm parameter update... (not shown)

def predict(X):
ensembled forward pass .
Hl1 = np.maximum(©, np.dot(Wl, X) + bl)|* p # NOTE: scale the activations
H2 = np.maximum(©, np.dot(W2, H1) + b2) * p # NOTE: scale the activations ES(:EEIE; Eat teasst tIrT1€3
out = np.dot(W3, H2) + b3

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

More common: “Inverted dropout”

e S R N A (o S R I S ¥ it ol e
p = 0.5 # probabl 1Ty 01 Keeping a unit active. higher = less dropout

def train_step(X):

F =g S C L TP A e il
forward pass for example 3-layer neural network

H1 = np.maximum(®, np.dot(Wl, X) + bl)
Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
Hl *= Ul # drop!

H2 np.maximum(©®, np.dot(W2, Hl) + b2)

U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)

+:

el s A A S e
errorm parameter updarte...

t shown) test time is unchanged!
e o s /

H1 = np.maximum(®, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, Hl) + b2)
out = np.dot(W3, H2) + b3

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Training CNNs

* Most of these things are practical heuristics that
have been empirically discovered to work well:
— Batched training
— Preprocessing / data augmentation
— Momentum
— Learning rate decay
— Weight initialization and batch normalization
— Ensembling
— Dropout

Next Up: CNN Architecture Tour

 What happened since AlexNet?
* There’s a general theme:

-
£

»

.?

\

WE NEED TO GO
"~ DEEPER

Review: LeNet-5

[LeCun et al., 1998]

Image Maps
Input

Fully Connected

/

Convolutions
Subsampllng

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture: Q - L |
CONVI NEA [0 T e s
MAX POOLA1 . ®

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012, Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

D48 Yense

Case Study: AlexNet E}

[Krizhevsky et al. 2012]

5 i
v -l ¥
g
>
| g
M ek S
| €

13 dense densel

;\& Ny |
Full (simplified) AlexNet architecture: [M g T o
[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOLZ2: 3x3 filters at stride 2

[13x13x256] NORMZ2: Normalization layer

[13x13x384] CONV3: 384 3xa3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class SCOI‘GS) Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

.
@

Case Study: AlexNet N e e ><>(\

[Krizhevsky et al. 2012] \

-1 i 1T dense’| |dense
Ear N s ﬂ 3 o

3{ 1000

Full (simplified) AlexNet architecture: Q N\ - w7 Mo Mae b e
[227x227x3] INPUT o N L pe

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

Details/Retrospectives:

- first use of ReLU

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus

- L2 weight decay 5e-4

[4096] 4096 neurons) , o _ o
[4096] 4096 NEUrons 7 CNN ensemble: 18.2% -> 15.4%
[1 000] 1 000 neurons (ClaSS SCOI’eS) Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012, Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Case Study: AlexNet

[Krizhevsky et al. 2012]

Dap \dense

\

1000

Full (simplified) AlexNet architecture:
[227x227x3] INPUT]
[55x55x96][CONV1: 96 11x11 filters at stride 4, pad 0
Imm‘%]JMAx POOL1: 3x3 filters at stride 2 [55x55x48] x 2
[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 Historical note: Trained on GTX 580
[13x13x256] MAX POOL2: 3x3 filters at stride 2 GPU with only 3 GB of memory.
[13x13x256] NORM2: Normalization layer Network spread across 2 GPUs, half
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 the neurons (feature maps) on each
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 GPU.

[13x13x256] CONVS5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOLS3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores) Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282
25
20
15
10

5

2010 2011
Lin et al Sanchez &
Perronnin

|

First CNN-based winner

=

16.4

152 layers| |152 layers| | 152 layers

11.7

19 layers

2012 2013 2014
Krizhevsky et al| Zeiler &
(AlexNet) Fergus

22 layers

7.3 67
5.1
8 layers . - . 3.6 3 23 .
| H H =

2014

Simonyan & Szegedy et al
Zisserman (VGG) (GoogleNet)

A A A

2015 2016 2017 Human
He et al Shao et al Hu et al Russakovsky et al
(ResNet) (SENet)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Not deeper! Just better tuned

Z F N et [Zeiler and Fergus, 2013]

image size 224

13 13 13 _ e
filter size 7 3 3
’ 'ln 384 '1'1 \384 \2.56 M
_siride 2 3x3 max 3x3 max C
3x3 max pool 50""35 pool contrast pool 4096 4096 class

e — 2] sy, stride 2 units units| | softmax

3 55 i
a 13 6

256 256

Input Image

Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer?7 Output

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

WE NEED TO GO/.
7 —

DEEPER

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282

25
20

16.4
15

10

0

2010 2011 2012
Lin et al Sanchez & Krizhevsky et al
Perronnin (AlexNet)

2013

Zeiler &
Fergus

Deeper Networks

\

152 layers| |152 layers| |152 layers

A A A

19 layers| (22 layers)
7.3 6.7
2014 2014

Simonyan & Szegedy et al

Zisserman (VGG) (GoogleNet)

5.1
3.6 3 2.3 .
H B =

2015 2016 2017 Human
He et al Shao et al Hu et al Russakovsky et al
(ResNet) (SENet)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Case Study: VGGNet

[Simonyan and Zisserman, 2014] : fcf:r;i() : : :é :23? :

el —

Small filters, Deeper networks 1 | :

[1 |]

| | | Poal]

8 layers (AlexNet) _ —— |
-> 16 - 19 layers (VGG16Net) — { | |
: Fodl : [Foo]

Only 3x3 CONYV stride 1, pad 1 | - |
and 2x2 MAX POOL stride 2 — e
Cmee] n || |

11.7% top 5 error in ILSVRC'13 SENNNNNN SE—

(z F N et) . : Input : i Input Il
->7.3% top 5 error in ILSVRC'14 AlexNet VGG16 VGG19

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Case Study: VGGNet

[Simonyan and Zisserman, 2014] : fif'TS?Z : : :(é 3532 :
l FC 4096 | | Pool J
l FC 4096 | | |
Q: Why use smaller filters? (3x3 conv) — }
| | |]
| | | Pool |
[Pool 1 |]
i] |]
' l] I
Stack of three 3x_3 conv (Stl:lde ‘!) layers | - |
has same effective receptive field as Cr)]
P11 | 1 |]
one 7x7 conv layer e] |] | |
T | [Pool] | Bool]
_ _ S | | | |
Q: What is the effective receptive field of [SScov 36t l | []
. | Poal] |1 Pool |
three 3x3 conv (stride 1) layers? s) |]]
) []]
[Input | Input]

AlexNet VGG16 VGG19

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Case Study: VGGNet

. . l Softrnax || FC 4096 J

[Simonyan and Zisserman, 2014] Crom 1 CrRaos

[FC 4096 || Pool J

l FC 4096] |]

Q: Why use smaller filters? (3x3 conv) — |

| |]

[[| Pool]

Stack of three 3x3 conv (stride 1) layers —8 :

i ive fi l] |]

has same effective receptive field as s | - |

one 7x7 conv layer v I ——

> [1 |]

ez] 1] 1 1

But deeper, more non-linearities - =

) [| | |

| Pool | 1 Pool |

And fewer parameters: 3 * (32C?) vs. CEem) | | | |

72C2 for C channels per layer — —_— —
AlexNet VGG16 VGG19

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 Foo
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 ot
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000 VGG16

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)
TOTAL params: 138M parameters

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Case Study: VGGNet

. . | Softrmax || S |
[Simonyan and Zisserman, 2014] o [1 | ;Z :Zj: 1
fc7 | FC 4096] | Paol |
fc6 | FC 4006 | |]
. | Pool] |]
Details: convs-3 | |)
- ILSVRC’14 2nd in classification, 1st in z::::'j: : [' —]]
localization —— |
. Qimi i : conva-3 | T]
Similar training procedure as Krizhevsky ez | = |
2012 f7 conva-1 |] |]
. . fc6 | Pool] | Pool]
- No Local Response Normalisation (LRN) coma2 | || :
- Use VGG16 or VGG19 (VGG19 only covs COTCNZT] comva-t : : II :
. convd | | Pool Pool

slightly better, more memory) o | || ,
- Use ensembles for best results el Bl W
- FC7 features generalize well to other com2 ot] comtz | | e
taSkS convl [_11xi1 conv. 96) convi-1 | | |]
[Tnput] | Tnput]

AlexNet VGG16 VGG19

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

