
Convolutional Neural Networks
Training Tricks and Architecture Innovations

Scott Wehrwein
CSCI 497P/597P: Computer Vision

Reading

• http://cs231n.github.io/neural-networks-3/
• http://cs231n.github.io/convolutional-
networks/

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

Announcements

• HW2 Out
– Optional
– Due Thursday night
– Review in class Friday

• Today’s OH extended to a bit before 5
• I’ll extend OH tomorrow if there’s demand.

Goals

• Understand some of the common tricks and
strategies for designing and training neural
networks:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout

Training CNNs

• Most of these things are practical heuristics that
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout

Data Augmentation

• When >1 million training images is not
enough:
– Randomly Flip, Scale, Crop, Rotate, Perturb

brightness and color
– Example:

import torchvision.transforms as tvt
transforms = tvt.Compose([

tvt.Resize((224,224)),
tvt.ColorJitter(hue=.05, saturation=.05),
tvt.RandomHorizontalFlip(),
tvt.RandomRotation(20, resample=PIL.Image.BILINEAR)

])

Data Augmentation

Training CNNs

• Most of these things are practical heuristics that
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout

Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Activations become zero!

What do the gradients look like?

Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

W = np.random.randn(fan_in, fan_out) / np.sqrt(2/fan_in)
fan_in = numel(input)
fan_out = numel(output)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Problem: do we necessarily want a zero-
mean unit-variance input?

Details in the batchorm paper:
https://arxiv.org/pdf/1502.03167.pdf

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

• At test time, the answer shouldn’t depend on the
batch:
• Instead, use a global average (computed during

training) of activation means and variances

https://arxiv.org/pdf/1502.03167.pdf

Batch Normalization

TL;DR: Using batch normalization speeds up training and
makes it less sensitive to weight initialization.

Training CNNs

• Most of these things are practical heuristics that
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Why would this work?
• Using different random initializations results in training arriving at

different local minima.
• Remarkable (empirical) fact: performance of each one is similar!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Training CNNs

• Most of these things are practical heuristics that
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout

Regularization: Recall
• Penalizes large weights to prevent the model

from fitting training data too closely (overfitting)
– Helps network generalize to unseen data

• L2 regularization forces parameters to be used
“equally”
– parameters with similar magnitudes will have a lower

regularization cost than mostly zero with a few huge
values.

• Another way to force the network to use all its
parameters equally: randomly drop parameters
each training iteration!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Another way to force the network to use all its parameters
equally: randomly drop parameters each training iteration!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Training CNNs

• Most of these things are practical heuristics that
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout

Next Up: CNN Architecture Tour

• What happened since AlexNet?
• There’s a general theme:

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Not deeper! Just better tuned

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

