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Reading

• http://cs231n.github.io/neural-networks-3/
• http://cs231n.github.io/convolutional-
networks/
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Announcements

• HW2 Out
– Optional
– Due Thursday night
– Review in class Friday

• Today’s OH extended to a bit before 5
• I’ll extend OH tomorrow if there’s demand.



Goals

• Understand some of the common tricks and 
strategies for designing and training neural 
networks:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout



Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout



Data Augmentation

• When >1 million training images is not 
enough:
– Randomly Flip, Scale, Crop, Rotate, Perturb 

brightness and color
– Example:

import torchvision.transforms as tvt
transforms = tvt.Compose([

tvt.Resize((224,224)),
tvt.ColorJitter(hue=.05, saturation=.05),
tvt.RandomHorizontalFlip(),
tvt.RandomRotation(20, resample=PIL.Image.BILINEAR)

])



Data Augmentation



Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
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Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Weight Initialization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Activations become zero!

What do the gradients look like?



Weight Initialization
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W = np.random.randn(fan_in, fan_out) / np.sqrt(2/fan_in)
# fan_in = numel(input)
# fan_out = numel(output)
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Problem: do we necessarily want a zero-
mean unit-variance input?



Details in the batchorm paper:
https://arxiv.org/pdf/1502.03167.pdf

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

• At test time, the answer shouldn’t depend on the 
batch:
• Instead, use a global average (computed during 

training) of activation means and variances

https://arxiv.org/pdf/1502.03167.pdf


Batch Normalization

TL;DR: Using batch normalization speeds up training and 
makes it less sensitive to weight initialization.



Training CNNs

• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout
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Why would this work? 
• Using different random initializations results in training arriving at 

different local minima.
• Remarkable (empirical) fact: performance of each one is similar!
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• Most of these things are practical heuristics that 
have been empirically discovered to work well:
– Batched training
– Preprocessing / data augmentation
– Momentum
– Learning rate decay
– Weight initialization and batch normalization
– Ensembling
– Dropout



Regularization: Recall
• Penalizes large weights to prevent the model 

from fitting training data too closely (overfitting)
– Helps network generalize to unseen data

• L2 regularization forces parameters to be used 
“equally”
– parameters with similar magnitudes will have a lower 

regularization cost than mostly zero with a few huge 
values.

• Another way to force the network to use all its 
parameters equally: randomly drop parameters 
each training iteration!
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Another way to force the network to use all its parameters 
equally: randomly drop parameters each training iteration!
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Next Up: CNN Architecture Tour

• What happened since AlexNet?
• There’s a general theme:
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Not deeper! Just better tuned
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