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Reading

• http://cs231n.github.io/convolutional-
networks/
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Announcements



Goals

• Understand the motivation and behavior of 
convolutional layers in neural networks.

• Understand the degrees of freedom available 
in setting up a convolution layer:
– Output channels, kernel size, padding, stride

• Know the meaning of the various basic layers 
involved in standard CNN architectures
– Conv, ReLU, Pool, Fully Connected
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More
Convolutions





Taking a step back: Image Recognition
• We have images; ML works on vectors.
• To do machine learning, we need a function

that takes an image and converts it into a 
vector. 

• Given an image, use ! to get a vector 
representing a point in high dimensional 
space
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Classifying Images: Pipeline
1. Represent the image in some feature space

2. Classify the image based on its feature 
representation.

• h(                                              ) = ”dog”
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Two important pieces

• The feature extractor (     )

• The classifier (h)
– (this is what we’ve been talking about this whole 

time: linear classifiers, now neural networks)
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Let’s make the simplest possible  

• Represent an image as a vector in 
• Step 1: convert image to gray-scale and 

resize to fixed size

Rd

�



Linear classifiers on pixels are bad



Linearly separable classes



Linear classifiers on pixels are bad

How do we fix it?
• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers
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Life Before Deep Learning

Input  
Pixels

Extract  
Hand-Crafted 

Features

Figure: Karpathy 2016

Concatenate into  
a vector x

SVM

Linear  
Classifier

Ans

Key: cleverly design features so that by the time you get to 
the classifier, the classes are linearly separable



The last layer of (most) CNNs are 
linear classifiers

Input  
Pixels

Ans

Perform everything with a big neural  
network, trained end-to-end

This piece is just a linear classifier

Key: perform enough processing so that by the time you get  
to the end of the network, the classes are linearly separable

(GoogLeNet)



The last layer of (most) CNNs are 
linear classifiers

Input  
Pixels

Ans

Perform everything with a big neural  
network, trained end-to-end

This piece is just a linear classifier

(GoogLeNet)

The network is the feature extractor and the classifier.

h swallowed !!



A Linear Classifier

• y = Wx + b
• Every row of y corresponds to a hyperplane in 

x space

=
The case when din = 2. A 
single row in y plotted 
for every possible value 
of x

din
dout



A Neural Network

• Key idea: build complex functions by composing simple functions

f(x) = Wx f(x) = Wx f(x) = Wxg(x) = 
max(x,0)

g(x) = 
max(x,0)

x

z

1 row of z 
plotted for 

every value of x

1 row of y 
plotted for 

every value of x

y



Linear Classifier: Parameter Count
• How many parameters does a linear function 

have? Suppose:
– # pixels = 256*256 = 65536
– # classes = 1024

=
The case when din = 2. A 
single row in y plotted 
for every possible value 
of x

din
dout



The linear function for images

65K
W

65K

1024

(not to scale!)
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• How many parameters does a linear function 

have? Suppose:
– # pixels = 256*256 = 65536 = 216

– # classes = 1024 = 210



Linear Classifier: Parameter Count
• How many parameters does a linear function 

have? Suppose:
– # pixels = 256*256 = 65536 = 216

– # classes = 1024 = 210

• 226 parameters for a one-layer network on a tiny 
image.

• More layers means more parameters:
– more computation
– difficult to train

• Can we make better use of parameters?



Idea 1: local connectivity

• Pixels only connected to nearby pixels in the 
prior layer



Idea 2: Translation invariance

• Pixels only connected to nearby pixels
• Weights should not depend on the location of 

the neighborhood



Linear function + translation invariance 
= convolution

• Local connectivity determines kernel size

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2



Convolution is still linear

W

Convolution layers can be written as matrix multiplications
• The matrix is sparse: an output pixel only depends on neighboring inputs.



Convolution is still linear
Convolution layers can be written as matrix multiplications

• The matrix is sparse: an output pixel only depends on neighboring inputs.
• The weights are shared across rows of W!
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Convolution as a general layer



Convolutional Neural Networks

• Convolution layers interspersed with 
activation functions.



Convolution as a primitive
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Convolution as a primitive
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• How many parameters?
– in_channels * Kw * Kh * out_channels
– Example: 3x3x10 kernel, 10 output channels = 900 

parameters!



Convolution as a feature detector

• score at (x,y) = dot product (filter, image patch 
at (x,y))

• Response represents similarity between filter 
and image patch



Kernel sizes and padding

k
k



Kernel sizes and padding

• Valid convolution decreases size by (k-1)/2 on 
each side
– Pad by (k-1)/2, or
– Allow spatial dimensions

to shrink.
k

k

Valid 
convolution(k-1)/2



torch.nn.Conv2d

• torch.nn.Conv2d(
in_channels,   # channels in input feature map
out_channels, # filters to learn (== channels in the output)
kernel_size,     # size of each filter kernel
stride=1,          # move this many pixels when sliding filter
padding=0,      # pad the input by this much (can be tuple)
dilation=1,
groups=1,
bias=True        # add a bias after convolution?
)



Convolutional Layers

• Feature maps (“hidden layers”, “activations”, 
etc.) are no longer column vectors but 3D 
blobs:
– Input # 256x256x3
– Conv2d(in: 3, out:10) # Blob size: 255x255x10
– Conv2d(in: 10, out:20) # Blob size: 255x255x20
– …



Convolutional Layers

• Feature maps (“hidden layers”, “activations”, 
etc.) are no longer column vectors but 3D 
blobs:
– Input # 256x256x3
– Conv2d(in: 3, out:10) # 255x255x10
– Conv2d(in: 10, out:20) # 254x254x20
– … this could get large quickly, and we ultimately 

need a vector that we can apply a linear classifier 
to.



Convolutional Networks

• Feature maps (“hidden layers”, “activations”, etc.) 
are no longer column vectors but 3D blobs:
– Input # 256x256x3
– Conv2d(in: 3, out:10) # 255x255x10
– Subsample (2x2)
– Conv2d(in: 10, out:20) # 127x127x20
– …
– Conv/subsample until 1x1xC
– Or at some point, just unravel HxWxC into HWCx1 

vector.
– Then apply a linear classifier!



CNNs before they were cool: LeNet-5
[LeCun et al., 1998]

• Today’s architectures still look a lot like this!



The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]



The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

• What happened?



• What changed?
– Bigger training data: ImageNet has 14 million images and 

20,000 categories.
• (performance numbers are on a 1000-category subset)

– GPU implementation of ConvNets
• Train bigger, deeper networks for longer than before

– ReLU
• Not new in AlexNet, but a necessary design choice to avoid

vanishing gradients in deep network

• Hence “deep learning”: 
– a rebranding of formerly unfashionable neural networks

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]



The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

• What else is in this network?
– ReLU after each layer (not pictured)
– Dense = Fully connected = Linear layer = a matrix multiply
– Max pooling



Downsampling, Subsampling, Pooling

• Reducing spatial dimensions:
– Subsample (e.g. throw away every other pixel)
– Average pooling
– Max pooling (most commonly used)

Max pooling:Downsampling:


