
Convolutional Neural Networks
and some of the practicalities that make them
work

Scott Wehrwein
CSCI 497P/597P: Computer Vision

Reading

• http://cs231n.github.io/convolutional-
networks/

http://cs231n.github.io/convolutional-networks/

Announcements

Goals

• Understand the motivation and behavior of
convolutional layers in neural networks.

• Understand the degrees of freedom available
in setting up a convolution layer:
– Output channels, kernel size, padding, stride

• Know the meaning of the various basic layers
involved in standard CNN architectures
– Conv, ReLU, Pool, Fully Connected

Last time: Neural Networks

Slide: Fei-Fei Li, Justin Johnson, & Serena YeungSlide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Last time: Neural Networks

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Nonlinearitites!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Today: Convolutional Neural Networks

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Nonlinearitites!

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

More
Convolutions

Taking a step back: Image Recognition
• We have images; ML works on vectors.
• To do machine learning, we need a function

that takes an image and converts it into a
vector.

• Given an image, use ! to get a vector
representing a point in high dimensional
space

� () =

Classifying Images: Pipeline
1. Represent the image in some feature space

2. Classify the image based on its feature
representation.

• h() = ”dog”

� () =

Two important pieces

• The feature extractor ()

• The classifier (h)
– (this is what we’ve been talking about this whole

time: linear classifiers, now neural networks)

�

Let’s make the simplest possible

• Represent an image as a vector in
• Step 1: convert image to gray-scale and

resize to fixed size

Rd

�

Linear classifiers on pixels are bad

Linearly separable classes

Linear classifiers on pixels are bad

How do we fix it?
• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers

Linear classifiers on pixels are bad

How do we fix it?
• Solution 1: Better feature vectors
• Solution 2: Non-linear classifiers

Life Before Deep Learning

Input
Pixels

Extract
Hand-Crafted

Features

Figure: Karpathy 2016

Concatenate into
a vector x

SVM

Linear
Classifier

Ans

Key: cleverly design features so that by the time you get to
the classifier, the classes are linearly separable

The last layer of (most) CNNs are
linear classifiers

Input
Pixels

Ans

Perform everything with a big neural
network, trained end-to-end

This piece is just a linear classifier

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable

(GoogLeNet)

The last layer of (most) CNNs are
linear classifiers

Input
Pixels

Ans

Perform everything with a big neural
network, trained end-to-end

This piece is just a linear classifier

(GoogLeNet)

The network is the feature extractor and the classifier.

h swallowed !!

A Linear Classifier

• y = Wx + b
• Every row of y corresponds to a hyperplane in

x space

=
The case when din = 2. A
single row in y plotted
for every possible value
of x

din
dout

A Neural Network

• Key idea: build complex functions by composing simple functions

f(x) = Wx f(x) = Wx f(x) = Wxg(x) =
max(x,0)

g(x) =
max(x,0)

x

z

1 row of z
plotted for

every value of x

1 row of y
plotted for

every value of x

y

Linear Classifier: Parameter Count
• How many parameters does a linear function

have? Suppose:
– # pixels = 256*256 = 65536
– # classes = 1024

=
The case when din = 2. A
single row in y plotted
for every possible value
of x

din
dout

The linear function for images

65K
W

65K

1024

(not to scale!)

Linear Classifier: Parameter Count
• How many parameters does a linear function

have? Suppose:
– # pixels = 256*256 = 65536 = 216

– # classes = 1024 = 210

Linear Classifier: Parameter Count
• How many parameters does a linear function

have? Suppose:
– # pixels = 256*256 = 65536 = 216

– # classes = 1024 = 210

• 226 parameters for a one-layer network on a tiny
image.

• More layers means more parameters:
– more computation
– difficult to train

• Can we make better use of parameters?

Idea 1: local connectivity

• Pixels only connected to nearby pixels in the
prior layer

Idea 2: Translation invariance

• Pixels only connected to nearby pixels
• Weights should not depend on the location of

the neighborhood

Linear function + translation invariance
= convolution

• Local connectivity determines kernel size

5.4 0.1 3.6

1.8 2.3 4.5

1.1 3.4 7.2

Convolution is still linear

W

Convolution layers can be written as matrix multiplications
• The matrix is sparse: an output pixel only depends on neighboring inputs.

Convolution is still linear
Convolution layers can be written as matrix multiplications

• The matrix is sparse: an output pixel only depends on neighboring inputs.
• The weights are shared across rows of W!

.

. . .

.

Convolution as a general layer

Convolutional Neural Networks

• Convolution layers interspersed with
activation functions.

Convolution as a primitive

w

h

c

w

h

c’

Convolution

c

c’

Convolution as a primitive

w

h

c

w

h

c’

Convolution

c

c’

• How many parameters?
– in_channels * Kw * Kh * out_channels
– Example: 3x3x10 kernel, 10 output channels = 900

parameters!

Convolution as a feature detector

• score at (x,y) = dot product (filter, image patch
at (x,y))

• Response represents similarity between filter
and image patch

Kernel sizes and padding

k
k

Kernel sizes and padding

• Valid convolution decreases size by (k-1)/2 on
each side
– Pad by (k-1)/2, or
– Allow spatial dimensions

to shrink.
k

k

Valid
convolution(k-1)/2

torch.nn.Conv2d

• torch.nn.Conv2d(
in_channels, # channels in input feature map
out_channels, # filters to learn (== channels in the output)
kernel_size, # size of each filter kernel
stride=1, # move this many pixels when sliding filter
padding=0, # pad the input by this much (can be tuple)
dilation=1,
groups=1,
bias=True # add a bias after convolution?
)

Convolutional Layers

• Feature maps (“hidden layers”, “activations”,
etc.) are no longer column vectors but 3D
blobs:
– Input # 256x256x3
– Conv2d(in: 3, out:10) # Blob size: 255x255x10
– Conv2d(in: 10, out:20) # Blob size: 255x255x20
– …

Convolutional Layers

• Feature maps (“hidden layers”, “activations”,
etc.) are no longer column vectors but 3D
blobs:
– Input # 256x256x3
– Conv2d(in: 3, out:10) # 255x255x10
– Conv2d(in: 10, out:20) # 254x254x20
– … this could get large quickly, and we ultimately

need a vector that we can apply a linear classifier
to.

Convolutional Networks

• Feature maps (“hidden layers”, “activations”, etc.)
are no longer column vectors but 3D blobs:
– Input # 256x256x3
– Conv2d(in: 3, out:10) # 255x255x10
– Subsample (2x2)
– Conv2d(in: 10, out:20) # 127x127x20
– …
– Conv/subsample until 1x1xC
– Or at some point, just unravel HxWxC into HWCx1

vector.
– Then apply a linear classifier!

CNNs before they were cool: LeNet-5
[LeCun et al., 1998]

• Today’s architectures still look a lot like this!

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

• What happened?

• What changed?
– Bigger training data: ImageNet has 14 million images and

20,000 categories.
• (performance numbers are on a 1000-category subset)

– GPU implementation of ConvNets
• Train bigger, deeper networks for longer than before

– ReLU
• Not new in AlexNet, but a necessary design choice to avoid

vanishing gradients in deep network

• Hence “deep learning”:
– a rebranding of formerly unfashionable neural networks

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

The CNN that made them cool: AlexNet
[Krizhevsky et al. 2012]

• What else is in this network?
– ReLU after each layer (not pictured)
– Dense = Fully connected = Linear layer = a matrix multiply
– Max pooling

Downsampling, Subsampling, Pooling

• Reducing spatial dimensions:
– Subsample (e.g. throw away every other pixel)
– Average pooling
– Max pooling (most commonly used)

Max pooling:Downsampling:

