
Softmax, Regularization, Gradient Descent

Scott Wehrwein
CSCI 497P/597P: Computer Vision



Reading

• http://cs231n.github.io/optimization-1/

http://cs231n.github.io/optimization-1/


Announcements



Goals

• Understand the intuition behind the softmax
classifier with cross-entropy loss and its 
interpretation of scores as unnormalized log 
probabilities.

• Understand how to train a classifier by 
minimizing a loss function using gradient 
descent.

• Understand the intuition behind using 
Stochastic (Minibatch) Gradient Descent.



Linear classifiers

• Equation: !"# + % = 0
• Points on the same side 

are the same class



Multiclass Linear Classifiers:
Stack multiple wT into a matrix.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Multiclass Linear Classifier:
Geometric Interpretation

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How do we find a good W, b?

• Step 1: For a given W, b, 
decide on a Loss 
Function: a measure of 
how much we dislike 
the line.

• Step 2: use optimization
to find the W, b that 
minimize the loss 
function.



Loss Functions

• Step 1: For a given W, b, decide on a 
Loss Function: a measure of how much we 
dislike this classifier.
– Last time: SVM loss (binary case)
– Today: Softmax + cross-entropy loss

• Step 2: use optimization to find the W, b that 
minimize the loss function.
– Today: gradient descent



Loss Functions

• Step 1: For a given W, b, decide on a 
Loss Function: a measure of how much we 
dislike this classifier.

• Loss Function intuition: 
– loss should be large if many data points are 

misclassified
– loss should be small (0?) if all data is classified 

correctly.



Loss Functions – SVM Loss

• SVM Loss:
– Insists that data points are not just correctly 

classified, but a certain distance from the 
hyperplane:

– Li = max(0 xi, 1- yi(wT xi + b)

xi = i’th data point
yi = i’th data point’s true label:

-1 if red
+1 if green



Loss Functions – SVM Loss

• SVM Loss:
– Insists that data points are not just correctly 

classified, but a certain distance from the 
hyperplane:

– Li = max(0 xi, 1- yi(wT xi + b)

– L(w, b) = Σi Li

– Loss for a given line is the sum
of the loss for all datapoints

xi = i’th data point
yi = i’th data point’s true label:

-1 if red
+1 if green



Loss Functions – SVM Loss

• SVM Loss – multiclass case:
– Insists that data points are not just correctly 

classified, but correct the class score is a certain 
amount higher than every other class score:

– Let fj = the score for class j (fj = wj
Tx )

– Li = Σj max(0, 1 + sj - syi)



Softmax Classifier / Cross-Entropy 
Loss: Intuition

WT x + b gives us a vector of scores, one per 
class (each row of W is a classifier)

Wouldn’t it be nice to interpret these as 
probabilities?



Binary Equivalent:
Logistic Regression Loss



Softmax Classifier / Cross-Entropy 
Loss: Intuition

WT x + b gives us a vector of scores, one per class 
(each row of W is a classifier)

Wouldn’t it be nice to interpret these as 
probabilities?
They’re not:

not always nonnegative
don’t sum to 1

But we can treat them as unnormalized log 
probabilities.



f = WT x gives us a vector of scores, one per 
class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all 
positive values, then normalize to sum to 1:

Cross-entropy loss: measure KL divergence
between the predicted distribution and the 
true distribution:

Li = � log

 
efyiP
j e

fj

!

<latexit sha1_base64="SfpwiXULaYQjOCD9/L2fYjcZBTo=">AAACJXicbVDLSgNBEJz1GddX1KOXwSDowbCrgh4URC8ePCiYRMjGZXbSm0wy+2CmVwjL/owXf8WLB0UET/6Kk5iDr4KGoqqb7q4glUKj47xbE5NT0zOzpTl7fmFxabm8slrXSaY41HgiE3UTMA1SxFBDgRJuUgUsCiQ0gv7Z0G/cgdIiia9xkEIrYp1YhIIzNJJfPrrwBT2mO55MOp6EELdsL1SM53Cbh34+8EVRFHbu6Szye3Qk9orCU6LTxW2/XHGqzgj0L3HHpELGuPTLL1474VkEMXLJtG66ToqtnCkUXEJhe5mGlPE+60DT0JhFoFv56MuCbhqlTcNEmYqRjtTvEzmLtB5EgemMGHb1b28o/uc1MwwPW7mI0wwh5l+LwkxSTOgwMtoWCjjKgSGMK2FupbzLTEhogrVNCO7vl/+S+m7V3as6V/uVk9NxHCWyTjbIFnHJATkh5+SS1Agn9+SRPJMX68F6sl6tt6/WCWs8s0Z+wPr4BKn7pWw=</latexit>

p(xi is class k) =
efkP
j e

fj
<latexit sha1_base64="ivjqUA0WpjDZGafB/1GrrQQzDFQ=">AAACJHicbVDLSgNBEJz1bXxFPXoZDIJewq4KCiKIXjwqmChk4zI76U0mmX0w0yuGZT/Gi7/ixYMPPHjxW5xsctBowUB1VTc9XX4ihUbb/rQmJqemZ2bn5ksLi0vLK+XVtbqOU8WhxmMZqxufaZAighoKlHCTKGChL+Ha750N/Os7UFrE0RX2E2iGrB2JQHCGRvLKR8n2vSeoi3CPGRWacsm0pjnt7dBj6gaK8Qxus8Dr5Xnm6jT0urSou3nulSt21S5A/xJnRCpkhAuv/Oa2Yp6GEGGxpuHYCTYzplBwCXnJTTUkjPdYGxqGRiwE3cyKI3O6ZZQWDWJlXoS0UH9OZCzUuh/6pjNk2NHj3kD8z2ukGBw2MxElKULEh4uCVFKM6SAx2hIKOMq+IYwrYf5KeYeZYNDkWjIhOOMn/yX13aqzV7Uv9ysnp6M45sgG2STbxCEH5ISckwtSI5w8kCfyQl6tR+vZerc+hq0T1mhmnfyC9fUNtGCk5g==</latexit>

Softmax Classifier / Cross-Entropy 
Loss: Intuition



Regularization

No! 2W is also has L = 0!
Which do we prefer – W, or 2W? 

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Regularization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Regularization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How do we find a good classifier?

• Step 1: For a given W, b, decide on a 
Loss Function: a measure of how much we 
dislike this classifier.
– Last time: SVM loss (binary case)
– Today: Softmax + cross-entropy loss

• Step 2: use optimization to find the W, b that 
minimize the loss function.
– Today: gradient descent



Optimization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How do we find a W that minimizes L?
• Bad idea: Random search.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How’d that go for you?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Finding a W that minimizes L

• A better idea: walk downhill.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Gradient descent: SVM loss



Gradient Descent



Gradient Descent: Generally

• Gradient of the loss
function with respect to 
the weights tells us how to 
change the weights to 
improve the loss.

• L(X; W) depends on
– All data points x1..xn

– Very expensive to evaluate

W1

W2



Gradient Descent: Generally

• Gradient of the loss
function with respect to 
the weights tells us how to 
change the weights to 
improve the loss.

• L(X; W) depends on
– All data points x1..xn

– Very expensive to evaluate

W1

W2



Stochastic Gradient Descent

• L(X; W) depends on
– All data points x1..xn

– Weights W
• Very expensive to evaluate if you have a lot of 

data.



Stochastic Gradient Descent

• Idea: consider only a few data points at a
time.

• Loss is now computed using only a small batch 
(minibatch) of data points.

• Update weights the same way using the 
gradient of L wrt the weights.


