CSCI 497P/597P: Computer Vision

Scott Wehrwein

Softmax, Regularization, Gradient Descent




Reading

e http://cs231n.github.io/optimization-1/



http://cs231n.github.io/optimization-1/

Announcements



Goals

* Understand the intuition behind the softmax
classifier with cross-entropy loss and its
interpretation of scores as unnormalized log
probabilities.

* Understand how to train a classifier by
minimizing a loss function using gradient
descent.

* Understand the intuition behind using
Stochastic (Minibatch) Gradient Descent.



Linear classifiers

e Equation:wlix+b =0

 Points on the same side
are the same class




Multiclass Linear Classifiers:
Stack multiple w' into a matrix.

stretch pixels into single column

02 |-05]| 01 | 20 56 i1 -96.8 | cat score

15 [ 13 [ 21 | 00 | |231| 4| 32 | —» | 437.9 | gog score

o ima?;:- O (025 0.2 | -0.3 24 -1.2 61.95 Shiniscare
€L

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Multiclass Linear Classifier:

Geometric I\r‘wterpretation

car classifier

deer classifier

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How do we find a good W, b?

e Step 1: For a given W, b,
decide on a Loss
Function: a measure of
how much we dislike
the line.

* Step 2: use optimization
to find the W, b that
minimize the loss
function.




Loss Functions

e Step 1: For a given W, b, decide on a
Loss Function: a measure of how much we
dislike this classifier.
— Last time: SVM loss (binary case)
— Today: Softmax + cross-entropy loss

e Step 2: use optimization to find the W, b that
minimize the loss function.

— Today: gradient descent



Loss Functions

e Step 1: For a given W, b, decide on a

Loss Function: a measure of how much we
dislike this classifier.

* Loss Function intuition:

— loss should be large if many data points are
misclassified

— loss should be small (07?) if all data is classified
correctly.



Loss Functions — SVM Loss

e SVM Loss:

— Insists that data points are not just correctly
classified, but a certain distance from the
hyperplane:

— L, = max(0 x;,, 1- yi(w' x; + b)

x. = i"th data point
y. = i'th data point’s true label:
-1 if red

+1 if green



Loss Functions — SVM Loss

e SVM Loss:

— Insists that data points are not just correctly
classified, but a certain distance from the
hyperplane:

— L =max(0 x;, 1- yi(w' x; + b)

X; = i"th data point
y; = i’th data point’s true label:
-1 if red

+1 if green

_ L(W/ b) = zi Li

— Loss for a given line is the sum
of the loss for all datapoints



Loss Functions — SVM Loss

e SVM Loss — multiclass case:

— Insists that data points are not just correctly
classified, but correct the class score is a certain
amount higher than every other class score:

— Let f; = the score for class j (f; = w;'x )

- Li - ZJ maX(O, 1 + SJ - Syi)




Softmax Classifier / Cross-Entropy
Loss: Intuition

W' x + b gives us a vector of scores, one per
class (each row of W is a classifier)

Wouldn’t it be nice to interpret these as
probabilities?



~

Binary Equivalent:
Logistic Regression Loss

Ify=1 " Ify=0

Jho(Z)] -1 o ho(x) 1




Softmax Classifier / Cross-Entropy
Loss: Intuition

WT x + b gives us a vector of scores, one per class
(each row of W is a classifier)

Wouldn’t it be nice to interpret these as
probabilities?

They’re not:

not always nonnegative
don’tsumto 1

But we can treat them as unnormalized log
probabilities.



Softmax Classifier / Cross-Entropy
Loss: Intuition

f=WTx gives us a vector of scores, one per
class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all
positive values, then normalize to sum to 1:

efk
p(x; is class k) =

Z] efj

Cross-entropy loss: measure KL divergence
between the predicted distribution and the
true distribution:

nyi

Z] efj

Li = — 10g



Regularization

flx, W) =Wx
L=1%V 3., max(0, f(zi; W); — f(zi; W)y, + 1)

E.g. Suppose that we found a W such that L = 0.
Is this W unique?

No! 2W is also has L = 0!
Which do we prefer — W, or 2W?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Regularization

Data loss: Model predictions
should match training data

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Regularization

N

N J H/_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Regularization )\ = regularization strength

(hyperparameter)

ZL (i, W), 4i) + AR(W)

\ J W_/

N
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples

L2 regularization: R(W) = >, >, W},

L1 regularization: R(W) =3, 3, |[Wi|

Elastic net (L1 + L2): R(W) = >, 3=, BW7, + |[Wiy|

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Regularization: Prefer Simpler Models

O
O
© @

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Regularization: Prefer Simpler Models

f, £

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Regularization: Prefer Simpler Models

f, £

Regularization pushes against fitting the data
too well so we don't fit noise in the data

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



N

\ J H/_/
~
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How do we find a good classifier?

e Step 1: For a given W, b, decide on a
Loss Function: a measure of how much we
dislike this classifier.
— Last time: SVM loss (binary case)
— Today: Softmax + cross-entropy loss

e Step 2: use optimization to find the W, b that
minimize the loss function.

— Today: gradient descent



Optimization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How do we find a W that minimizes L?
e Bad idea: Random search.

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How’d that go for you?

Lets see how well this works on the test set...

scores = Wbhest.dot(Xte cols)
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~95%)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Finding a W that minimizes L

e A better idea: walk downhill.

-

Slide: Fei-Feij Li. Jusn Johnson. & Serena Yeung



Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Gradient descent: SVM loss

L=\

L; = Z [max(O, wJTxi — wg,;x,- + A)]
J#Yi

wal.Li = - (Z ‘“(erxi - W}Y;:.xi + A > 0)) X;

J.’ré)’i



Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad #



Gradient Descent: Generally

* Gradient of the loss
function with respect to w. I
the weights tells us how to
change the weights to
improve the loss.

e L(X; W) depends on
— All data points x;..x,
— Very expensive to evaluate



Gradient Descent: Generally

* Gradient of the loss
function with respect to w. I
the weights tells us how to
change the weights to
improve the loss.

e L(X; W) depends on
— All data points x;..x,
— Very expensive to evaluate



Stochastic Gradient Descent

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad

* L(X; W) depends on N &
— All data points x;..x,
— Weights W

* Very expensive to evaluate if you have a lot of
data.



Stochastic Gradient Descent

* |dea: consider only a few data points at a
time.

* Loss is now computed using only a small batch
(minibatch) of data points.

* Update weights the same way using the
gradient of L wrt the weights.



