CSCI 497P/597P: Computer Vision Scott Wehrwein

Softmax, Regularization, Gradient Descent

Reading

http://cs231n.github.io/optimization-1/

Announcements

Goals

- Understand the intuition behind the softmax classifier with cross-entropy loss and its interpretation of scores as unnormalized log probabilities.
- Understand how to train a classifier by minimizing a loss function using gradient descent.
- Understand the intuition behind using Stochastic (Minibatch) Gradient Descent.

Linear classifiers

- Equation: $w^T x + b = 0$
- Points on the same side are the same class

Multiclass Linear Classifiers: Stack multiple w^T into a matrix.

Multiclass Linear Classifier: Geometric Interpretation

How do we find a good W, b?

- Step 1: For a given W, b, decide on a Loss
 Function: a measure of how much we dislike the line.
- Step 2: use optimization to find the W, b that minimize the loss function.

Loss Functions

- Step 1: For a given W, b, decide on a
 Loss Function: a measure of how much we
 dislike this classifier.
 - Last time: SVM loss (binary case)
 - Today: Softmax + cross-entropy loss
- Step 2: use **optimization** to find the W, b that *minimize* the loss function.
 - Today: gradient descent

Loss Functions

 Step 1: For a given W, b, decide on a Loss Function: a measure of how much we dislike this classifier.

- Loss Function intuition:
 - loss should be large if many data points are misclassified
 - loss should be small (0?) if all data is classified correctly.

Loss Functions – SVM Loss

SVM Loss:

- Insists that data points are not just correctly classified, but a certain distance from the hyperplane:
- $L_i = max(0 x_i, 1- y_i(w^T x_i + b)$

 $x_i = i'th data point$

 $y_i = i'th data point's true label:$

- -1 if red
- +1 if green

Loss Functions – SVM Loss

SVM Loss:

 Insists that data points are not just correctly classified, but a certain distance from the hyperplane:

$$- L_i = max(0 x_i, 1- y_i(w^T x_i + b)$$

- $-L(w, b) = \Sigma_i L_i$
- Loss for a given line is the sum of the loss for all datapoints

Loss Functions – SVM Loss

- SVM Loss multiclass case:
 - Insists that data points are not just correctly classified, but correct the class score is a certain amount higher than every other class score:
 - Let f_j = the score for class j ($f_j = w_j^T x$)

$$-L_i = \Sigma_j \max(0, 1 + s_j - s_{yi})$$

Softmax Classifier / Cross-Entropy Loss: Intuition

W^T x + b gives us a vector of scores, one per class (each row of W is a classifier)

Wouldn't it be nice to interpret these as probabilities?

Binary Equivalent: Logistic Regression Loss

Softmax Classifier / Cross-Entropy Loss: Intuition

 $W^T x + b$ gives us a vector of scores, one per class (each row of W is a classifier)

Wouldn't it be nice to interpret these as probabilities?

They're not:

not always nonnegative don't sum to 1

But we can treat them as unnormalized log probabilities.

Softmax Classifier / Cross-Entropy Loss: Intuition

 $f = W^T x$ gives us a vector of scores, one per class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all positive values, then normalize to sum to 1:

promalize to sum to 1:
$$p(x_i \text{ is class } k) = \frac{e^{f_k}}{\sum_j e^{f_j}}$$
 easure KL divergence

Cross-entropy loss: measure *KL divergence* between the **predicted** distribution and the **true** distribution:

$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}}\right)$$

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i;W)_j - f(x_i;W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0! Which do we prefer – W, or 2W?

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)}_{}$$

Data loss: Model predictions should match training data

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

 λ = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization:
$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L1 regularization:
$$R(W) = \sum_k \sum_l |W_{k,l}|$$

Elastic net (L1 + L2):
$$R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$$

Regularization: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data too well so we don't fit noise in the data

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

How do we find a good classifier?

- Step 1: For a given W, b, decide on a
 Loss Function: a measure of how much we
 dislike this classifier.
 - Last time: SVM loss (binary case)
 - Today: Softmax + cross-entropy loss
- Step 2: use **optimization** to find the W, b that *minimize* the loss function.
 - Today: gradient descent

Optimization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

How do we find a W that minimizes L?

Bad idea: Random search.

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
  W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
  loss = L(X train, Y train, W) # get the loss over the entire training set
  if loss < bestloss: # keep track of the best solution
    bestloss = loss
    bestW = W
  print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
                                                       Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung
```

How'd that go for you?

Lets see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad! (SOTA is ~95%)

Finding a W that minimizes L

A better idea: walk downhill.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Gradient descent: SVM loss

$$L_i = \sum_{j \neq y_i} \left[\max(0, w_j^T x_i - w_{y_i}^T x_i + \Delta) \right]$$

$$\nabla_{w_{y_i}} L_i = -\left(\sum_{j \neq y_i} \mathbb{1}(w_j^T x_i - w_{y_i}^T x_i + \Delta > 0)\right) x_i$$

Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Gradient Descent: Generally

 Gradient of the loss function with respect to the weights tells us how to change the weights to improve the loss.

 W_1

- L(X; W) depends on
 - All data points $x_1..x_n$
 - Very expensive to evaluate

Gradient Descent: Generally

 Gradient of the loss function with respect to the weights tells us how to change the weights to improve the loss.

 W_1

- L(X; W) depends on
 - All data points $x_1..x_n$
 - Very expensive to evaluate

Stochastic Gradient Descent

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

 $L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$

- L(X; W) depends on
 - All data points $x_1..x_n$
 - Weights W
- Very expensive to evaluate if you have a lot of data.

Stochastic Gradient Descent

- Idea: consider only a few data points at a time.
- Loss is now computed using only a small batch (minibatch) of data points.
- Update weights the same way using the gradient of L wrt the weights.