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Reading

• http://cs231n.github.io/optimization-1/

http://cs231n.github.io/optimization-1/


Announcements



Goals

• Understand the intuition behind the softmax
classifier with cross-entropy loss and its 
interpretation of scores as unnormalized log 
probabilities.

• Understand how to train a classifier by 
minimizing a loss function using gradient 
descent.

• Understand the intuition behind using 
Stochastic (Minibatch) Gradient Descent.



Linear classifiers

• Equation: !"# + % = 0
• Points on the same side 

are the same class



Multiclass Linear Classifiers:
Stack multiple wT into a matrix.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Multiclass Linear Classifier:
Geometric Interpretation

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How do we find a good W, b?

• Step 1: For a given W, b, 
decide on a Loss 
Function: a measure of 
how much we dislike 
the line.

• Step 2: use optimization
to find the W, b that 
minimize the loss 
function.



Loss Functions

• Step 1: For a given W, b, decide on a 
Loss Function: a measure of how much we 
dislike this classifier.
– Last time: SVM loss (binary case)
– Today: Softmax + cross-entropy loss

• Step 2: use optimization to find the W, b that 
minimize the loss function.
– Today: gradient descent



Loss Functions

• Step 1: For a given W, b, decide on a 
Loss Function: a measure of how much we 
dislike this classifier.

• Loss Function intuition: 
– loss should be large if many data points are 

misclassified
– loss should be small (0?) if all data is classified 

correctly.



Loss Functions – SVM Loss

• SVM Loss:
– Insists that data points are not just correctly 

classified, but a certain distance from the 
hyperplane:

– Li = max(0 xi, 1- yi(wT xi + b)

xi = i’th data point
yi = i’th data point’s true label:

-1 if red
+1 if green



Loss Functions – SVM Loss

• SVM Loss:
– Insists that data points are not just correctly 

classified, but a certain distance from the 
hyperplane:

– Li = max(0 xi, 1- yi(wT xi + b)

– L(w, b) = Σi Li

– Loss for a given line is the sum
of the loss for all datapoints

xi = i’th data point
yi = i’th data point’s true label:

-1 if red
+1 if green



Loss Functions – SVM Loss

• SVM Loss – multiclass case:
– Insists that data points are not just correctly 

classified, but correct the class score is a certain 
amount higher than every other class score:

– Let fj = the score for class j (fj = wj
Tx )

– Li = Σj max(0, 1 + sj - syi)



Softmax Classifier / Cross-Entropy 
Loss: Intuition

WT x + b gives us a vector of scores, one per 
class (each row of W is a classifier)

Wouldn’t it be nice to interpret these as 
probabilities?



Binary Equivalent:
Logistic Regression Loss



Softmax Classifier / Cross-Entropy 
Loss: Intuition

WT x + b gives us a vector of scores, one per class 
(each row of W is a classifier)

Wouldn’t it be nice to interpret these as 
probabilities?
They’re not:

not always nonnegative
don’t sum to 1

But we can treat them as unnormalized log 
probabilities.



f = WT x gives us a vector of scores, one per 
class (each row of W is a classifier)

Softmax normalization: Exponentiate to get all 
positive values, then normalize to sum to 1:

Cross-entropy loss: measure KL divergence
between the predicted distribution and the 
true distribution:

Li = � log
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Softmax Classifier / Cross-Entropy 
Loss: Intuition



Regularization

No! 2W is also has L = 0!
Which do we prefer – W, or 2W? 

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Regularization
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Regularization
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Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How do we find a good classifier?

• Step 1: For a given W, b, decide on a 
Loss Function: a measure of how much we 
dislike this classifier.
– Last time: SVM loss (binary case)
– Today: Softmax + cross-entropy loss

• Step 2: use optimization to find the W, b that 
minimize the loss function.
– Today: gradient descent



Optimization

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How do we find a W that minimizes L?
• Bad idea: Random search.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



How’d that go for you?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Finding a W that minimizes L

• A better idea: walk downhill.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Gradient descent: SVM loss



Gradient Descent



Gradient Descent: Generally

• Gradient of the loss
function with respect to 
the weights tells us how to 
change the weights to 
improve the loss.

• L(X; W) depends on
– All data points x1..xn

– Very expensive to evaluate

W1

W2



Gradient Descent: Generally

• Gradient of the loss
function with respect to 
the weights tells us how to 
change the weights to 
improve the loss.

• L(X; W) depends on
– All data points x1..xn

– Very expensive to evaluate

W1

W2



Stochastic Gradient Descent

• L(X; W) depends on
– All data points x1..xn

– Weights W
• Very expensive to evaluate if you have a lot of 

data.



Stochastic Gradient Descent

• Idea: consider only a few data points at a
time.

• Loss is now computed using only a small batch 
(minibatch) of data points.

• Update weights the same way using the 
gradient of L wrt the weights.


