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Reading

• http://cs231n.github.io/classification/

http://cs231n.github.io/classification/


Announcements

• P4 out today. For real.



Goals
• Understand the benefits and limitations of linear 

classifiers over KNN.
• Understand the tradeoff between complexity in the 

feature extractor vs. complexity in the classifier.
• Understand the mathematical formulation of a binary 

and multiclass linear classifier.
• Know the definition and purpose of a loss function
• Understand the intuition behind linear classifiers with:
– SVM loss
– Softmax loss



Image classification - Multiclass 
classification

Which of these is it: 
dog, cat or zebra? 
Dog



KNN: Bottom Line

• Fast to train but slow to predict
• Distance metrics don’t behave well for high-

dimensional image vectors



Classifying Images
• Nearest Neighbor Classifier

• Linear Classifier
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Linear classifiers

• Finding nearest neighbor is slow.
• Basic idea: 
– Training time: find a line that separates the data
– Testing time: which side of the line is     (x) on?

+Fast to compute
-Restrictive – data must be linearly separable
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Linear classifiers

• A linear classifier 
corresponds to a 
hyperplane
– Equivalent of a line in 

high-dimensional space
– Equation: !"# + % = 0

• Points on the same 
side are the same class



Does this ever work?

• It’s easier to be 
linearly separable in 
high-dimensional 
space.

• But simple linear 
classifiers still don’t 
work on most 
interesting data.



Some history from the 

Antedeepluvian Era

• Example pipeline from days of yore:

– Detect corners and extract SIFT features

– Collect features into a “bag of features”

– (if you’re feeling fancy) maintain some spatial 

information

– Somehow convert feature bag to fixed size

– Apply linear classifier

• Key idea:       is designed by hand, while h is 

learned from data.
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Some history of the 
Antedeepluvian Era

• Key idea:       is designed by hand, while h is 
learned from data.

• Nowadays: learn both from data - “end-to-
end”: image goes in, label comes out.
– Enabled only recently by bigger
• labeled datasets
• compute power (GPUs)
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Linear classifiers

• Equation: !"# + % = 0
• Points on the same side 

are the same class



We have a classifier

• h(x) = wT x + b gives a 
score

• Score negative: red
• Score positive: blue

• Does it solve the 
runtime issues of KNN?



We have a classifier

• h(x) = wT x + b gives a 
score

• Score negative: red
• Score positive: blue

• Where do W and b 
come from?



How do we find a good W, b?

• Step 1: For a given W, b, 
decide on a Loss 
Function: a measure of 
how much we dislike 
the line.

• Step 2: use optimization
to find the W, b that 
minimize the loss 
function.



Questions?



Multiclass Linear Classifiers:
Stack multiple wT into a matrix.



Multiclass Linear Classifier:
Geometric Interpretation



Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung



Loss Functions

• Step 1: For a given W, b, decide on a 
Loss Function: a measure of how much we 
dislike this classifier.

• Step 2: use optimization to find the W, b that 
minimize the loss function.



Loss Functions

• Step 1: For a given W, b, decide on a 
Loss Function: a measure of how much we 
dislike this classifier.

• Loss Function intuition: 
– loss should be large if many data points are 

misclassified
– loss should be small (0?) if all data is classified 

correctly.



Loss Functions – SVM Loss

• SVM Loss:
– Insists that data points are not just correctly 

classified, but a certain distance from the 
hyperplane:

– Li = max(0 xi, 1- yi(wT xi + b)

xi = i’th data point
yi = i’th data point’s true label:

-1 if red
+1 if green



Loss Functions – SVM Loss

• SVM Loss:
– Insists that data points are not just correctly 

classified, but a certain distance from the 
hyperplane:

– Li = max(0 xi, 1- yi(wT xi + b)

– L(w, b) = Σi Li

– Loss for a given line is the sum
of the loss for all datapoints

xi = i’th data point
yi = i’th data point’s true label:

-1 if red
+1 if green



The Bias Trick



The Bias Trick

• Fold b into an additional dimension of w
• Add a fixed 1 to all feature vectors.

• Now, h(x) = wT x 



Softmax Classifier / Cross-Entropy 
Loss: Intuition

WT x + b gives us a vector of scores, one per 
class (each row of W is a classifier)

Wouldn’t it be nice to interpret these as 
probabilities?



Binary Equivalent:
Logistic Regression Loss



Softmax Classifier / Cross-Entropy 
Loss: Intuition

WT x + b gives us a vector of scores, one per class 
(each row of W is a classifier)

Wouldn’t it be nice to interpret these as 
probabilities?
They’re not:

not always nonnegative
don’t sum to 1

But we can treat them as unnormalized log 
probabilities.



Softmax Classifier / Cross-Entropy 
Loss: Intuition

But we can treat scores as unnormalized log 
probabilities.



Cross-Entropy Loss: Intuition

WT x + b gives us a vector of scores, one per 

class (each row of W is a classifier)

Cross-Entropy loss: Apply a sigmoid to get values 

between 0 and 1, then normalize them to sum 

to 1.

Then, compute the difference between the 

predicted distribution and the true distribution.


