
Linear Classifiers

Scott Wehrwein
CSCI 497P/597P: Computer Vision

Reading

• http://cs231n.github.io/classification/

http://cs231n.github.io/classification/

Announcements

• P4 out today. For real.

Goals
• Understand the benefits and limitations of linear

classifiers over KNN.
• Understand the tradeoff between complexity in the

feature extractor vs. complexity in the classifier.
• Understand the mathematical formulation of a binary

and multiclass linear classifier.
• Know the definition and purpose of a loss function
• Understand the intuition behind linear classifiers with:
– SVM loss
– Softmax loss

Image classification - Multiclass
classification

Which of these is it:
dog, cat or zebra?
Dog

KNN: Bottom Line

• Fast to train but slow to predict
• Distance metrics don’t behave well for high-

dimensional image vectors

Classifying Images
• Nearest Neighbor Classifier

• Linear Classifier

�

�
h

h

Linear classifiers

• Finding nearest neighbor is slow.
• Basic idea:
– Training time: find a line that separates the data
– Testing time: which side of the line is (x) on?

+Fast to compute
-Restrictive – data must be linearly separable

�
h

�

Linear classifiers

• A linear classifier
corresponds to a
hyperplane
– Equivalent of a line in

high-dimensional space
– Equation: !"# + % = 0

• Points on the same
side are the same class

Does this ever work?

• It’s easier to be
linearly separable in
high-dimensional
space.

• But simple linear
classifiers still don’t
work on most
interesting data.

Some history from the

Antedeepluvian Era

• Example pipeline from days of yore:

– Detect corners and extract SIFT features

– Collect features into a “bag of features”

– (if you’re feeling fancy) maintain some spatial

information

– Somehow convert feature bag to fixed size

– Apply linear classifier

• Key idea: is designed by hand, while h is

learned from data.

�

Some history of the
Antedeepluvian Era

• Key idea: is designed by hand, while h is
learned from data.

• Nowadays: learn both from data - “end-to-
end”: image goes in, label comes out.
– Enabled only recently by bigger
• labeled datasets
• compute power (GPUs)

�

Linear classifiers

• Equation: !"# + % = 0
• Points on the same side

are the same class

We have a classifier

• h(x) = wT x + b gives a
score

• Score negative: red
• Score positive: blue

• Does it solve the
runtime issues of KNN?

We have a classifier

• h(x) = wT x + b gives a
score

• Score negative: red
• Score positive: blue

• Where do W and b
come from?

How do we find a good W, b?

• Step 1: For a given W, b,
decide on a Loss
Function: a measure of
how much we dislike
the line.

• Step 2: use optimization
to find the W, b that
minimize the loss
function.

Questions?

Multiclass Linear Classifiers:
Stack multiple wT into a matrix.

Multiclass Linear Classifier:
Geometric Interpretation

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Loss Functions

• Step 1: For a given W, b, decide on a
Loss Function: a measure of how much we
dislike this classifier.

• Step 2: use optimization to find the W, b that
minimize the loss function.

Loss Functions

• Step 1: For a given W, b, decide on a
Loss Function: a measure of how much we
dislike this classifier.

• Loss Function intuition:
– loss should be large if many data points are

misclassified
– loss should be small (0?) if all data is classified

correctly.

Loss Functions – SVM Loss

• SVM Loss:
– Insists that data points are not just correctly

classified, but a certain distance from the
hyperplane:

– Li = max(0 xi, 1- yi(wT xi + b)

xi = i’th data point
yi = i’th data point’s true label:

-1 if red
+1 if green

Loss Functions – SVM Loss

• SVM Loss:
– Insists that data points are not just correctly

classified, but a certain distance from the
hyperplane:

– Li = max(0 xi, 1- yi(wT xi + b)

– L(w, b) = Σi Li

– Loss for a given line is the sum
of the loss for all datapoints

xi = i’th data point
yi = i’th data point’s true label:

-1 if red
+1 if green

The Bias Trick

The Bias Trick

• Fold b into an additional dimension of w
• Add a fixed 1 to all feature vectors.

• Now, h(x) = wT x

Softmax Classifier / Cross-Entropy
Loss: Intuition

WT x + b gives us a vector of scores, one per
class (each row of W is a classifier)

Wouldn’t it be nice to interpret these as
probabilities?

Binary Equivalent:
Logistic Regression Loss

Softmax Classifier / Cross-Entropy
Loss: Intuition

WT x + b gives us a vector of scores, one per class
(each row of W is a classifier)

Wouldn’t it be nice to interpret these as
probabilities?
They’re not:

not always nonnegative
don’t sum to 1

But we can treat them as unnormalized log
probabilities.

Softmax Classifier / Cross-Entropy
Loss: Intuition

But we can treat scores as unnormalized log
probabilities.

Cross-Entropy Loss: Intuition

WT x + b gives us a vector of scores, one per

class (each row of W is a classifier)

Cross-Entropy loss: Apply a sigmoid to get values

between 0 and 1, then normalize them to sum

to 1.

Then, compute the difference between the

predicted distribution and the true distribution.

