CSCI 497P/597P: Computer Vision

Scott Wehrwein

Linear Classifiers

PIPE 0.94

Reading

e http://cs231n.github.io/classification/

http://cs231n.github.io/classification/

Announcements

* P4 out today. For real.

Goals

Understand the benefits and limitations of linear
classifiers over KNN.

Understand the tradeoff between complexity in the
feature extractor vs. complexity in the classifier.

Understand the mathematical formulation of a binary
and multiclass linear classifier.

Know the definition and purpose of a loss function

Understand the intuition behind linear classifiers with:
— SVM loss
— Softmax loss

Image classification - Multiclass
classification

Which of these is it:
dog, cat or zebra?
Dog

KNN: Bottom Line

* Fast to train but slow to predict

e Distance metrics don’t behave well for high-
dimensional image vectors

Classifying Images

* Nearest Neighbor Classifier
the data NN classifier h

Linear classifiers

* Finding nearest neighbor is slow.

* Basic idea:
— Training time: find a line that separates the data

— Testing time: which side of the line is @®(x) on?
+Fast to compute
-Restrictive — data must be linearly separable h

¢

Linear classifiers

* A linear classifier
corresponds to a

hyperplane 0
— Equivalent of a line in 4 _,w

high-dimensional space

st M2 2 e 2

— Equation: wix +b =0

e Points on the same

side are the same class

Does this ever work?

* |t's easier to be
inearly separable in
nigh-dimensional
space.

* But simple linear
classifiers still don’t
work on most

interesting data.

io
=
@
n e
1
O O O O
o O O o
O O O O

O O O O

Some history from the
Antedeepluvian Era

 Example pipeline from days of yore:
— Detect corners and extract SIFT features
— Collect features into a “bag of features”

— (if you're feeling fancy) maintain some spatial
information

— Somehow convert feature bag to fixed size
— Apply linear classifier

e Key idea: ¢ is designed by hand, while h is
learned from data.

Some history of the
Antedeepluvian Era

e Key idea: ¢ is designed by hand, while h is
learned from data.

* Nowadays: learn both from data - “end-to-
end”: image goes in, label comes out.
— Enabled only recently by bigger

* labeled datasets
e compute power (GPUs)

Linear classifiers

e Equation:wlix+b =0

 Points on the same side
are the same class

We have a classifier

h(x) =w' x + b gives a
score

Score negative: red
Score positive: blue

Does it solve the
runtime issues of KNN?

We have a classifier

h(x) =w' x + b gives a
score

Score negative: red
Score positive: blue

Wheredo W and b
come from?

How do we find a good W, b?

e Step 1: For a given W, b,
decide on a Loss
Function: a measure of
how much we dislike
the line.

* Step 2: use optimization
to find the W, b that
minimize the loss
function.

Questions?

stretch pixels into single column

input image

i

Multiclass Linear Classifiers:
Stack multiple w' into a matrix.

32

-96.8

02 |-05| 01| 20 5l6

15 | 1.3 | 2.1 | 0.0 231

wiva 0 (025(02| 03 24
|14 2

-1.2

437.9

61.95

f(zs; W, b)

cat score

dog score

ship score

Multiclass Linear Classifier:

Geometric I\r‘wterpretation

car classifier

deer classifier

Interpreting a Linear Classifier: Visual Viewpoint

airplane .-)ﬂ.==.-ﬁ. Int image

automobile .H.!.ﬂ.:w- 86 | 23

bird S REK] SETH K-

cat I T et N R O B '
deer .dh'...-H " 02 | -05 15 | 1.3 0 | 25
dog i*.!ﬁhﬁ.ﬂ 01 | 20 21 | 0.0 02 | 03
frog ESa® R E : ¥ y
horse e 8 ER P T » [B [
ship ..!Bﬁ:'.i.ﬂﬁ Score |-9.8 437.9 61.95

truck ﬂ.!lil-?.i‘;

plane car cat deer dog frog horse ship truck

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Loss Functions

e Step 1: For a given W, b, decide on a
Loss Function: a measure of how much we
dislike this classifier.

e Step 2: use optimization to find the W, b that
minimize the loss function.

Loss Functions

e Step 1: For a given W, b, decide on a

Loss Function: a measure of how much we
dislike this classifier.

* Loss Function intuition:

— loss should be large if many data points are
misclassified

— loss should be small (07?) if all data is classified
correctly.

Loss Functions — SVM Loss

e SVM Loss:

— Insists that data points are not just correctly
classified, but a certain distance from the
hyperplane:

— L, = max(0 x;,, 1- yi(w' x; + b)

x. = i"th data point
y. = i'th data point’s true label:
-1 if red

+1 if green

Loss Functions — SVM Loss

e SVM Loss:

— Insists that data points are not just correctly
classified, but a certain distance from the
hyperplane:

— L =max(0 x;, 1- yi(w' x; + b)

X; = i"th data point
y; = i’th data point’s true label:
-1 if red

+1 if green

_ L(W/ b) = zi Li

— Loss for a given line is the sum
of the loss for all datapoints

The Bias Trick

The Bias Trick

 Fold b into an additional dimension of w
e Add a fixed 1 to all feature vectors.

* Now, h(x) =w'x

Softmax Classifier / Cross-Entropy
Loss: Intuition

W' x + b gives us a vector of scores, one per
class (each row of W is a classifier)

Wouldn’t it be nice to interpret these as
probabilities?

~

Binary Equivalent:
Logistic Regression Loss

Ify=1 " Ify=0

Jho(Z)] -1 o ho(x) 1

Softmax Classifier / Cross-Entropy
Loss: Intuition

WT x + b gives us a vector of scores, one per class
(each row of W is a classifier)

Wouldn’t it be nice to interpret these as
probabilities?

They’re not:

not always nonnegative
don’tsumto 1

But we can treat them as unnormalized log
probabilities.

Softmax Classifier / Cross-Entropy
Loss: Intuition

But we can treat scores as unnormalized log
probabilities.

Cross-Entropy Loss: Intuition

WT x + b gives us a vector of scores, one per
class (each row of W is a classifier)

Cross-Entropy loss: Apply a sigmoid to get values
between 0 and 1, then normalize them to sum
to 1.

Then, compute the difference between the
predicted distribution and the true distribution.

