CSCI 497P/597P: Computer Vision

Scott Wehrwein

Image Classification and Recognition

PIPE 0.94

Reading

e http://cs231n.github.io/classification/

http://cs231n.github.io/classification/

Announcements

* P4 out tonight(?)

Goals

Understand some of the reasons why image recognition is
hard.

Understand the standard ML pipeline for image
classification problems:

— Represent images as feature vectors

— Learn a classifier function from labeled data

— Classify novel images using the learned classifier

Understand KNN classifier and why it doesn’t work so well
on images.

— Performance

— Curse of dimensionality

Understand the importance of splitting data into

train/val/test sets when developing algorithms and tuning
hyperparameters.

Image classification

* Given an image, produce a label
* Label can be:

— 0/1 or yes/no: Binary classification
— one-of-k: Multiclass classification

— 0/1 for each of k concepts: Multilabel
classification

Image classification - Binary
classification

Is this a dog?
Yes

Image classification - Multiclass
classification

Which of these is it:
dog, cat or zebra?
Dog

Image classification - Multilabel
classification

nis a dog? Yes
nis furry? Yes
nis sitting down? Yes

MNIST

* 6000 examples per class

e 10 classes

O
(@
°

QNN HYD oD

A history of classification

1990’s

A history of classification : Caltech 101

* 101 classes
* 10 classes
* 30 examples per class

* Strong category-
specific biases

* Clean images

A history of classification: PASCAL VOC

e 20 classes :

* ~500 examples pemme =
class 20

e Clutter, occlusion S
hatural scenes

- [| —

1990’s 2004 2007-2012

A history of classification: ImageNet

e 1000 classes

e ~1000 examples
per class

* Mix of cluttered
and clean images

MNIST Caltech 101 PASCAL VOC

1990’s 2004 2007-2013 2013-2017

Why is recognition hard?

Pose variation

Why is recognition hard?

Lighting variatio

Why is recognition hard?

,,,,,,
R

Scale variation

Why is recognition hard?

Clutter and occlusion

Why is recognition hard?

Intrinsic intra-class variation

Why is recognition hard?

Inter-class similarity

The language of recognition

* Boundaries of classes are often fuzzy

 “A dogis an animal with four legs, a tail and a
snout”

* Really?

Other Recognition Problems

* Object Detection

(Vp)
&
P
O
O
. -
ol
C
O
=
C
o]0)
O
O
D
oc
S
Q
-
e
@

* Semantic Segmentation

Other Recognition Problems

* Instance Segmentation

Semantic Segmentation Instance Segmentation

Image: https://www.jeremyjordan.me/evaluating-image-segmentation-models/

Other Recognition Problems

* Action Recognition

Main Activity = Left Spike

¢ Y £ (13 0 6 4 B t ..n}

-y A A5 " (=] 2 r e 2

- . *] , -
:‘ 8 0 6 AN . = | 4 - . . L} l"’ ¥,
; o . LT A

T vy tA i ‘ e
E 98 " » :
‘. . 4 - ¥ Saae

LA | ’
”,v w gy "

= s par A .,

-r\‘l ’ g
_ L ..‘ —) | of J .. "
R ;.w) oy e R

! \
g'Standing

Waiti

Standi

Q gm

i° 2%)

Image: http://nguyenducminhkhoi.com/project/action_recognition/

How are we going to solve this?

An image classifier

def classify_image(image):

return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Attempts have been made

Find corners

VKA

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

def train(images, labels):
Machine learning!
return model

def predict(model, test_images):

Use model to predict labels
return test_labels

Example training set

alrplane

bird
cat

deer

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Representing Images

* We have images; ML works on vectors.

* To do machine learning, we need a function
that takes an image and converts it into a
vector.

* Given an image, use ¢ to get a vector
representing a point in high dimensional
space

Classifying Images

* Given an image, use ¢ to get a vector and
plot it as a point in high dimensional space

feature vectors to class labels:

+ h(T

) — Hdog”

Classifying Images: Pipeline

1. Represent the image in some feature space

2. Classify the image based on its feature

representation.

+ h(T

) — Hdog”

Two important pieces

* The feature extractor (¢)

* The classifier (h)

Let’s make the simplest possible ¢

* Represent an image as a vector in R?

e Step 1: convert image to gray-scale and
resize to fixed size

Feature space: representing images as
vectors

e Step 2: Flatten 2D array into 1D vector

— B

Let’s make the simplest possible h

* h(x) ="dog”
* Okay, let’s get a little less simple than that.

Let’s make a very simple h

h(x) = “dog”
Okay, let’s get a little less simple than that.

I’ve never seen x before, but I've seen a bunch of
other things.

h(x) = the label of the most similar thing to x of all
the things I've seen.

— assumption: similar data points have similar labels

A Simple h: Nearest Neighbor Classifier

the data NN classifier

def train(images, labels): Memorize all

Machine learning!
R data and labels

def predict(model, test_images): Predict the label
Use model to predict labels of the most similar

return test_labels . .
training image

Ficures: Fei-Fei Li, Justin Johnson, & Serena Yeung

import numpy as np

class NearestNeighbor:
def _ init_ (self):
pass

def train(:cl7, X, y):
“u% X is N x D where each row is an example. Y is l-dimension of size N """

the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr =y

def predict(:==.7, X):
“u% X is N x D where each row is an example we wish to predict label for
num test = X.shape[0]
lets make sure that the output type matches the 1nput type
Ypred = np.zeros(num test, dtype = =el7,.ytr.dtype)

loop over all test rows
for i in xrange(num test):
find the nearest training 1image to the 1'th test 1mage
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min _index] # predict the label of the nearest example

return Ypred Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

import numpy as np

class NearestNeighbor:
def _ init__ (self):
pass

Nearest Neighbor classifier

def train(sclf, X, y):
""" X is N x D where each row is an example. Y is 1l-dimension of size N """

the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y

Memorize training data

def predict(scL7, X):

“"* X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
lets make sure that the output type matches the Input type
Ypred = np.zeros(num_test, dtype = scl7.ytr.dtype)
loop over all test rows
for i in xrange(num_test):
find the nearest training image to the 1'th test image
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

import numpy as np

class NearestNeighbor:
def _ init_ (:=elf):
pass

def train(:sclf, X, y):
""" X is N x D where each row is an example. Y is 1l-dimension of size N

the nearest neighbor classifier simply remembers all the training data
f.Xtr = X
2l f.ytr =y

def predict(s=l7, X):
“"* X is N x D where each row is an example we wish to predict label for """
num_test = X.shape[0]
lets make sure that

Ypred = np.zeros(num_test, dtype = sel7.ytr.dtype)

the output type matches the input type

Nearest Neighbor classifier

rows

loop over all test

for i in xrange(num_test):

find the nearest training image to the 1'th test image
using the L1 distance (sum of absolute value differences)

distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

the index with smallest distance

For each test image:
Find closest train image
Predict label of nearest image

return Ypred

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Nearest Neighbor Classifier

e il canlls What’s the runtime
class NearestNeighbor: of train?
def _ init_ (Js
pass
def train(, X, y):

“* X is N x D where each row is an example. Y is l-dimension of size N """

Xtr = X
il What’s the runtime
def predict(, X): of predict?

"% X is N x D where each row is an example we wish to predict label for
num_test = X.shape[0]

Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test):

distances = np.sum(np.abs(A = XE1,21), axis w 1)
min index = np.argmin(distances)
Ypred[i] = Jytr{min index]

return Ypred Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Nearest Neighbor Classifier

import numpy as np What’s the runtime
class NearestNeighbor: of train?
def _ init_ () 0(1)
pass
def train(, X, y):

“ X 1s N x D where each row is an example. Y is l-dimension of size N """

Xtr =X
YN What’s the runtime
def predict(, X): of predict?
““ X is N x D where each row is an example we wish to predict label for ""' O(N)
num test = X.shape[0]
Ypred = np.zeros(num test, dtype = ytr.dtype)
Ideally, it’d be the
for i in x r;:rw:;;r_-(num_test): Other Way around-
| * slow training
distances = np.sum(np.abs(Xtr - X[i,:]), axis = 1) * fast prediction
min index = np.argmin(distances)
Ypred[i] = Jytr{min index]

return Ypred Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

oA~ T T IS S s B S S A
H-FOENMEANE R
=~ N R RS
LA TEFN -
b~ 3 I 9 i LY B &2
I*QIIFILQIIE

oA~ T IS S s I 7
S Ed O sl TR s Ll Sl
B~ BRSNS
gordleg @ rS@F7xN -

3 -> (0 9
P-EIFED N8N,

ng

na Yeu

n, & Sere

Slide: Fei-Fei Li, Justin Johnso

An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

An improvement: K nearest neighbors

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

 What do we mean by “nearest” anyway?

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

K-Nearest Neighbors: Distance Metric
L1 (Manhattan) distance L2 (Euclidean) distance

dy (I, I,) Zup 17| do(h,To) = [3 (7 - I7)?

[P

dh
&>

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

di(f,B) =} I} - If| alht) = [-1y
P

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Demo

e http://vision.stanford.edu/teaching/cs231n-demos/knn/

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Simple Image Classification Algorithm

. ¢ . Convert to grayscale and unravel into a
vector.

* h: Classify using majority label of the k nearest
neighbors according to a distance metric d.

* kand d are hyperparameters. How do we know
what to choose?

— Depends on the problem

— Usually no principled way to choose — trial and error is
often the only way.

Setting Hyperparameters

Idea #1: Choose hyperparameters

that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

train

test

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the data

BAD: K = 1 always works
perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose
hyperparameters that work best on test data

BAD: No idea how algorithm
will perform on new data

train test
Idea #3: Split data into train, val, and test; choose Better!
hyperparameters on val and evaluate on test '
train validation test

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

Setting Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds,
try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

Original Boxed Shifted Tinted

(all 3 images have same L2 distance to the one on the left)

Slide: Fei-Fei Li, Justin Johnson, & Serena Yeung

k-Nearest Neighbor on images never used.

Dimensions = 3

- Curse of dimensionality Points = 43
o © 06 o0 o A,
E(I)Tnetg s=|0: o= © o0 o0 O O O O O OO OO
A °© © © © o O O O OOOO
T © © © ©° o o o o [° OoO
© OO O O o o o o O

KNN: Bottom Line

* Fast to train but slow to predict

e Distance metrics don’t behave well for high-
dimensional image vectors

Classifying Images

* Nearest Neighbor Classifier
the data NN classifier h

Linear classifiers

* Finding nearest neighbor is slow.

* Basic idea:
— Training time: find a line that separates the data

— Testing time: which side of the line is @®(x) on?
+Fast to compute
- Restrictive

Some history of the
Antedeepluvian Era

e Common pipeline from days of yore:
— Detect corners and extract SIFT features
— Collect features into a “bag of features”

— (if you're feeling fancy) maintain some spatial
information

— Somehow convert feature bag to fixed size
— Apply linear classifier.

e Key idea: ¢ is designed by hand, while h is
learned from data.

Some history of the
Antedeepluvian Era

e Key idea: ¢ is designed by hand, while h is
learned from data.

* Nowadays: learn both from data - “end-to-
end”: image goes in, label comes out.
— Enabled only recently by bigger

* labeled datasets
e compute power (GPUs)

