CSCI 497P/597P: Computer Vision Scott Wehrwein

Cameras and Panoramas

Reading

• Szeliski: Chapter 2.1.5-6, 6.3

Goals

- Know the properties and projection matrix associated with **orthographic projection**.
- Understand the concept of focal length and its relationship with the projection matrix.
- Understand the causes and corrections for perspective and radial lens distortion.
- Understand how to construct a planar panorama by warping images to a common projection plane using homographies.

Announcements

Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture
 - How does the image relate to the scene?

Modeling projection

The coordinate system

- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
 - Why?
- The camera looks down the *negative* z axis
 - we like this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles (on board)

$$(x, y, z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

• We get the projection by throwing out the last coordinate:

$$(x, y, z)
ightarrow (-drac{x}{z}, -drac{y}{z})$$

Modeling projection

- Is this a linear transformation?
 - no-division by z is nonlinear

Homogeneous coordinates to the rescue—again!

$$(x,y) \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous image coordinates homogeneous scene coordinates

Converting *from* homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

This is known as perspective projection

- The matrix is the **projection matrix**
- (Can also represent as a 4x4 matrix OpenGL does something like this)

How does scaling the projection matrix change the transformation?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

 $\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$

$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

What is the meaning of d?

d = Focal length

• Can think of as "zoom"

24mm

50mm

• Also related to *field of view*

Field of view

APS-C Crop Body Measurement Table

Lens	After 1.62 Multiplier	APS-C Sensor (1.62 lens multiplier) Canon 60D, 7D, 70D, T3i, T4i	Hand Positions
18mm	29.16mm	Three hands wide at full arms length.	Henn Large and Cancer 1475 Cancer - 29. State The Concernment of the
28mm	45.36mm	Slightly less than two hands wide at full arms length.	Hen Less an Capal MPC Chapter + 0.3 Min The Capacity Control of Ca
35mm	56.7mm	One hand + width of one fist at full arms length.	Status of Canada Add Canada - 9.3 Am Status of Canada Add Canada - 9.3 Am Status of Canada - 9.3 Am
50mm	81mm	One hand wide + width of thumb at full arms length.	State Local ADV Server + Elsen Server and Server Advances
55mm	89.1mm	Slightly less than one hand wide at full arms length.	Sten Lets on Cancel 494 C Stears + 89.500 Stars - Stars Letter - Stars - 80.500 Stars - Stars - Star
85mm	137.7mm	Inside edge of thumb to tip of forefinger wide with hand in "L" shape, thumb up.	Stron Lotes and Charac #125 Zhrane + 125 Zhra Fund Haukh - Linds far of Pont Charlos Tar of Charlos main and an and the strong s

http://www.dslrsolutions.net/3298/using-your-hands-as-focal-length-calculator/

Focal length in practice

50mm

24mm

135mm

Fredo Durand

Focal length = cropping

50mm

24mm

135mm

Fredo Durand

Focal length vs. viewpoint

• Telephoto makes it easier to select background (a small change in viewpoint is a big change in background.

Grand-angulaire 24 mm

Normal 50 mm

Longue focale 135 mm

Fredo Durand

Wide angle

Standard

Telephoto

http://petapixel.com/2013/01/11/how-focal-length-affects-your-subjects-apparent-weight-as-seen-with-a-cat/

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

What does it mean to set f (d) to infinity?

Orthographic projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite
 - In other words, $f = \infty$

Orthographic projection

Perspective distortion

• Problem for architectural photography: converging verticals

Perspective distortion

 Problem for architectural photography: converging verticals

Tilting the camera upwards results in converging verticals

Keeping the camera level, with an ordinary lens, captures only the bottom portion of the building

Shifting the lens upwards results in a picture of the entire subject

• Solution: view camera (lens shifted w.r.t. film)

http://en.wikipedia.org/wiki/Perspective_correction_lens

Perspective distortion

- Problem for architectural photography: converging verticals
- Result:

Perspective distortion: People

Lens Distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

O2004 Vincent Bockaert 123di

Modeling distortion

- $x'_n = \hat{x}/\hat{z}$ Project $(\hat{x}, \hat{y}, \hat{z})$ to "normalized" $y'_n = \hat{y}/\hat{z}$ image coordinates $r^2 = x'_n{}^2 + y'_n{}^2$ $x'_{d} = x'_{n}(1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$ Apply radial distortion $y'_{d} = y'_{n}(1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$ $x' = fx'_d + x_c$ Apply focal length $y' = fy'_d + y_c$ translate image center
- To model lens distortion
 - Use above projection operation instead of standard projection matrix multiplication

Dimensionality Reduction Machine (3D to 2D)

3D world

Point of observation

What have we lost?

- Angles
- Distances (lengths)

Slide by A. Efros Figures © Stephen E. Palmer, 2002

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points \rightarrow points
- Lines → lines (collinearity is preserved)
 But line through focal point projects to a point
- Planes \rightarrow planes (or half-planes)

But plane through focal point projects to line

Projection properties

- Parallel lines converge at a vanishing point
 - Each direction in space has its own vanishing point
 - But parallels parallel to the image plane remain parallel

Questions?

Back to panoramas

Can we use homographies to create a 360 panorama?

Homographies project images onto a common plane.

each image is warped with a homography old H

We'll see what this homography means in terms of cameras and projection later. First -- Can't create a 360 panorama this way...

mosaic Projection Plane

Panoramas

• What if you want a 360° field of view?

Unwrapping a sphere

Credit: JHT's Planetary Pixel Emporium

Spherical reprojection

input f = 200 (pixels) f = 400 f = 800

Map image to spherical coordinates
 – need to know the focal length