CSCI 497P/597P: Computer Vision Scott Wehrwein

RANSAC: Fitting Transforms with Outliers

Reading

• Szeliski: Chapter 6.1

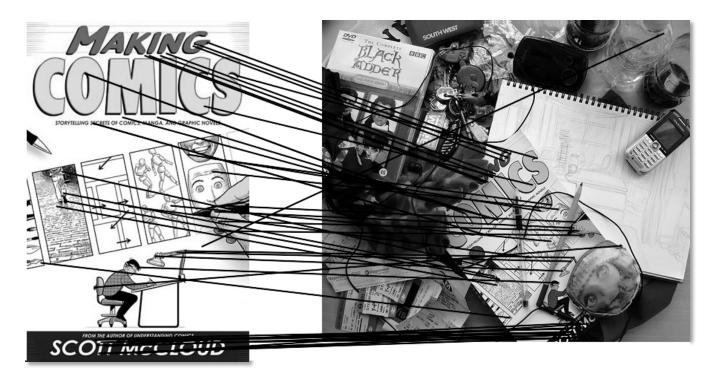
Goals

- Understand the Random Sample Consensus (RANSAC) algorithm.
- Be prepared to implement RANSAC for fitting image coordinate transforms using matches that may contain outliers.

Announcements

Computing transformations

- Given a set of matches between images A and B
 - How can we compute the transform T from A to B?



Find transform T that best "agrees" with the matches

Computing transformations

Fitting a Homography: TL;DM

• For each feature match
$$(x_i, y_i) \rightarrow (x_i', y_i')$$
, fill in 2 rows of A:
$$\begin{bmatrix}
x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1'x_1 & -x_1'y_1 & -x_1' \\
0 & 0 & 0 & x_1 & y_1 & 1 & -y_1'x_1 & -y_1'y_1 & -y_1' \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
x_n & y_n & 1 & 0 & 0 & 0 & -x_n'x_n & -x_n'y_n & -x_n' \\
0 & 0 & 0 & x_n & y_n & 1 & -y_n'x_n & -y_n'y_n & -y_n'
\end{bmatrix}
\begin{bmatrix}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
0
\end{bmatrix}$$

Fitting a Homography: TL;DM

- For each feature match (x_i, y_i) -> (x_i', y_i'),
 fill in 2 rows of A
- Solve the homogeneous least squares problem min h | |Ah | |²:
 - Take the SVD of A to get U, S, and V.
 - Let h be the right singular vector of A whose singular value is smallest.
 - Let h be the column of V (row of V^T) whose column index is the same as that of the smallest diagonal entry of S.

Solving for homographies

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1'x_1 & -x_1'y_1 & -x_1' \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y_1'x_1 & -y_1'y_1 & -y_1' \\ \vdots & & & & \vdots & & & \\ x_n & y_n & 1 & 0 & 0 & 0 & -x_n'x_n & -x_n'y_n & -x_n' \\ 0 & 0 & 0 & x_n & y_n & 1 & -y_n'x_n & -y_n'y_n & -y_n' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

Defines a least squares problem: minimize $\|\mathbf{A}\mathbf{h} - \mathbf{0}\|^2$

- ullet Since ${f h}$ is only defined up to scale, solve for unit vector $\hat{{f h}}$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T\mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Recap: Two Common Optimization Problems

Problem statement

Solution

minimize
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

least squares solution to
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\mathbf{x} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{b}$$

np.linalg.lstsq(A, b)

Problem statement

Solution

minimize
$$\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}$$
 s.t. $\mathbf{x}^T \mathbf{x} = 1$

non - trivial lsq solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$

$$U, \Sigma, V = \operatorname{svd}(A)$$

$$x \leftarrow v_{\arg\min_{i} \Sigma[i,i]}$$

Image Alignment Algorithm

Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B using least squares on set of matches

What could go wrong?

Code: fitting affine transformations

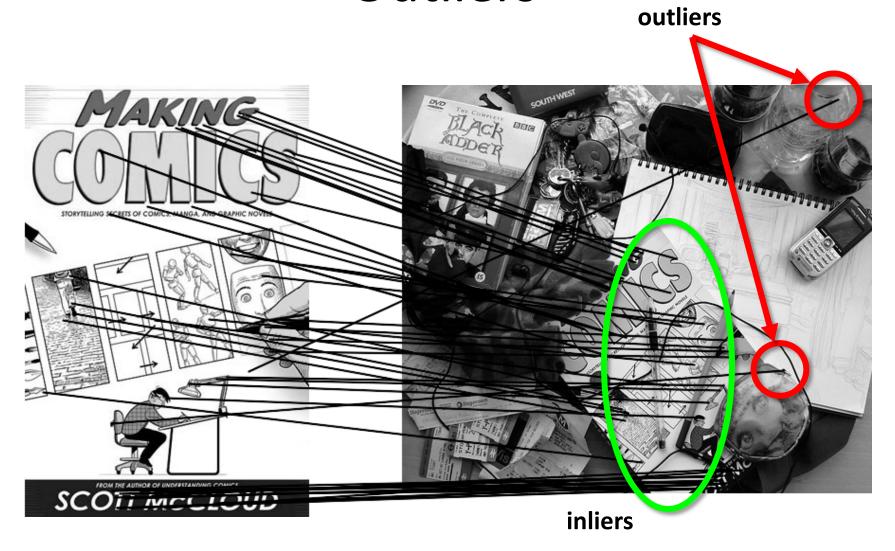
$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ \vdots & & & & & \\ x_n & y_n & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix}$$

$$\mathbf{A}$$

$$\mathbf{t}_{2n \times 6}$$

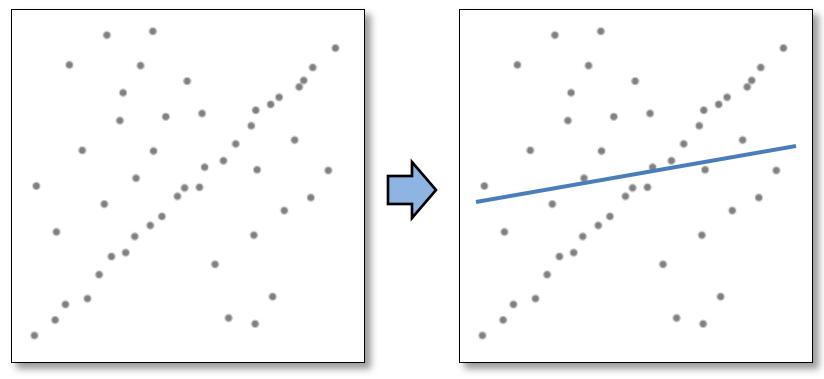
$$\mathbf{t}_{6 \times 1} = \mathbf{b}_{2n \times 1}$$

Outliers



Robustness

Let's consider a simpler example... linear regression



Problem: Fit a line to these datapoints

How can we fix this?

Least squares fit

We need a better cost function...

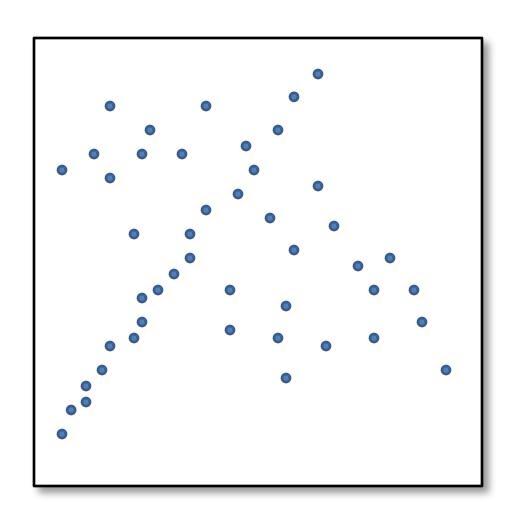
• Suggestions?

Idea

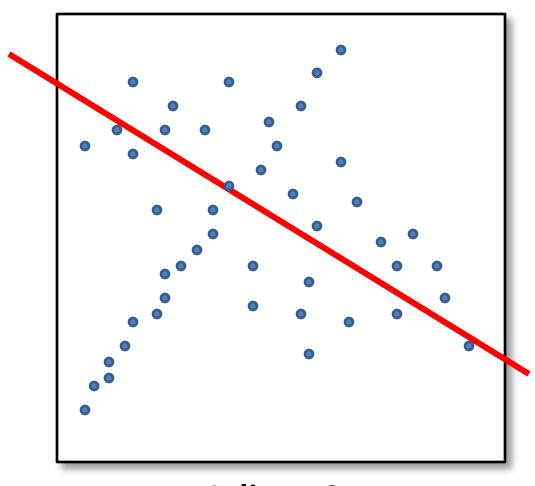
- Given a hypothesized line
- Count the number of points that "agree" with the line
 - "Agree" = within a small distance of the line
 - I.e., the inliers to that line

 For all possible lines, select the one with the largest number of inliers

Counting inliers

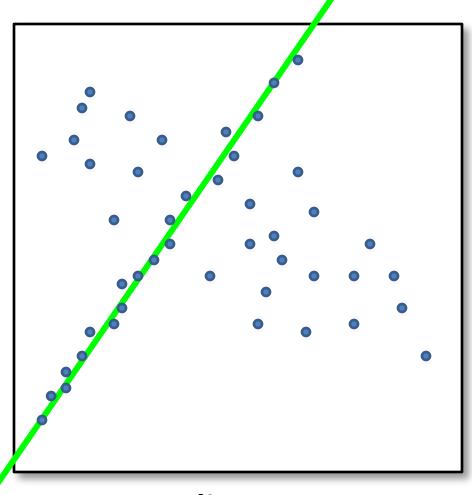


Counting inliers



Inliers: 3

Counting inliers



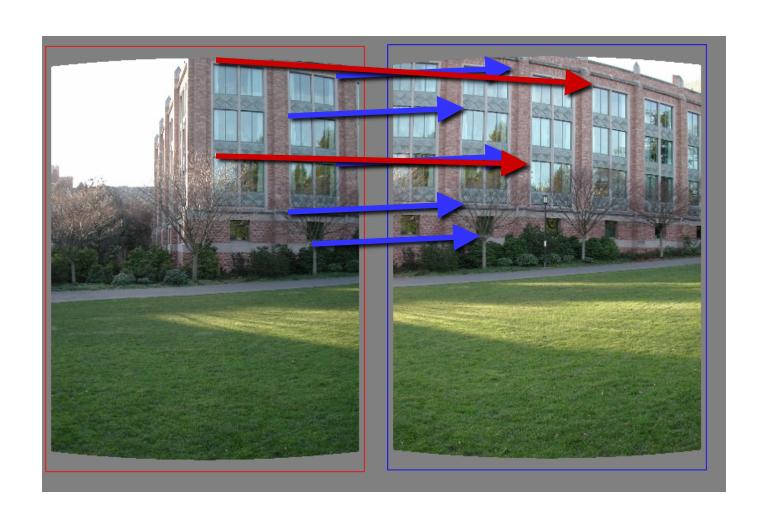
Inliers: 20

How do we find the best line?

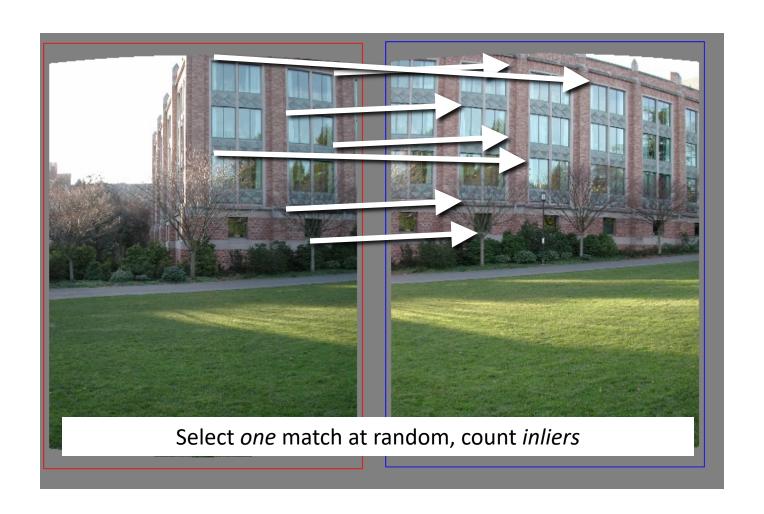
Unlike least-squares, no simple closed-form solution

- Hypothesize-and-test
 - Try out many lines, keep the best one
 - Which lines? Which one is the "best"?

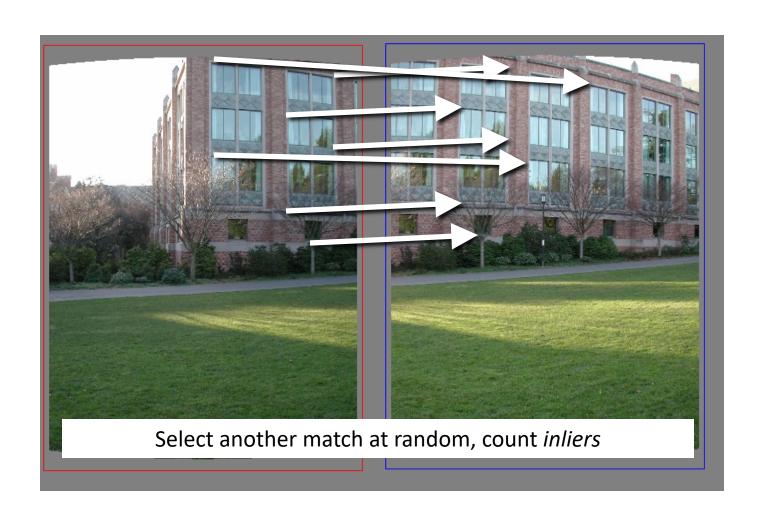
Translations



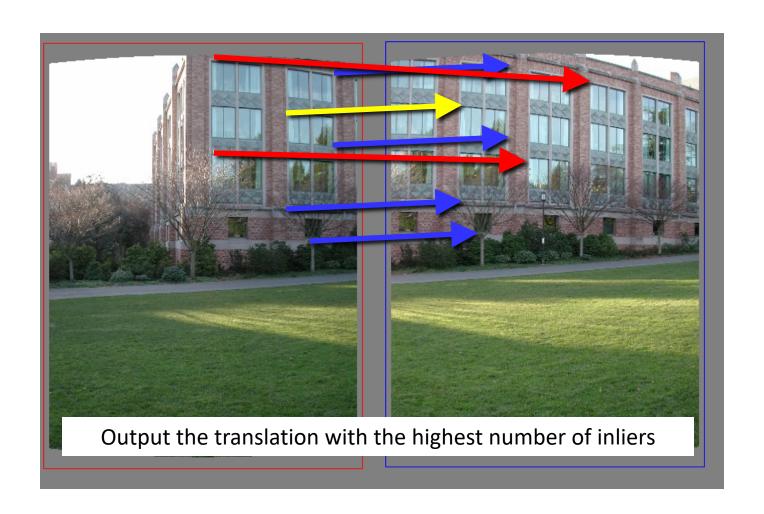
RAndom SAmple Consensus



RAndom SAmple Consensus



RAndom SAmple Consensus

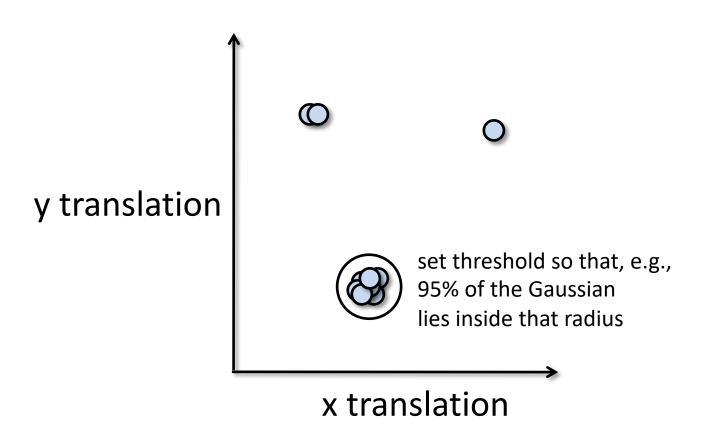


• Idea:

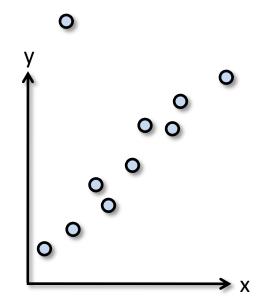
- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
 - RANSAC only has guarantees if there are < 50% outliers
- "All good matches are alike; every bad match is bad in its own way."
 - Tolstoy via Alyosha Efros

- Inlier threshold related to the amount of noise we expect in inliers
 - Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
 - Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
 - How many rounds do we need?

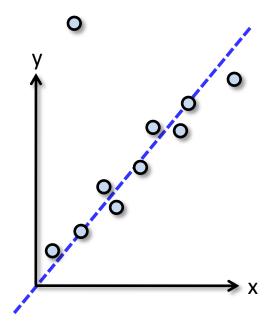
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
 - Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
 - How many rounds do we need?



- Back to linear regression
- How do we generate a hypothesis?



- Back to linear regression
- How do we generate a hypothesis?

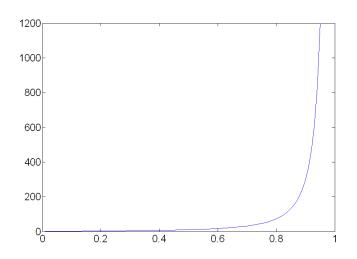


- General version:
 - 1. Randomly choose *s* samples
 - Typically s = minimum sample size that lets you fit a model
 - 2. Fit a model (e.g., line) to those samples
 - 3. Count the number of inliers that approximately fit the model
 - 4. Repeat *N* times
 - 5. Choose the model that has the largest set of inliers

How many rounds?

- If we have to choose s samples each time
 - with an outlier ratio e
 - and we want the right answer with probability p

	proportion of outliers <i>e</i>							
S	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

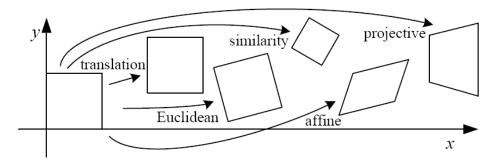


p = 0.99

Source: M. Pollefeys

How big is s?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)



Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c} ig[egin{array}{c} ig[egin{array}{c} ig[ig]_{2 imes 3} \end{array} \end{bmatrix}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg igg[m{R} igg m{t} igg]_{2 imes 3}$	3	lengths +···	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	angles $+\cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC pros and cons

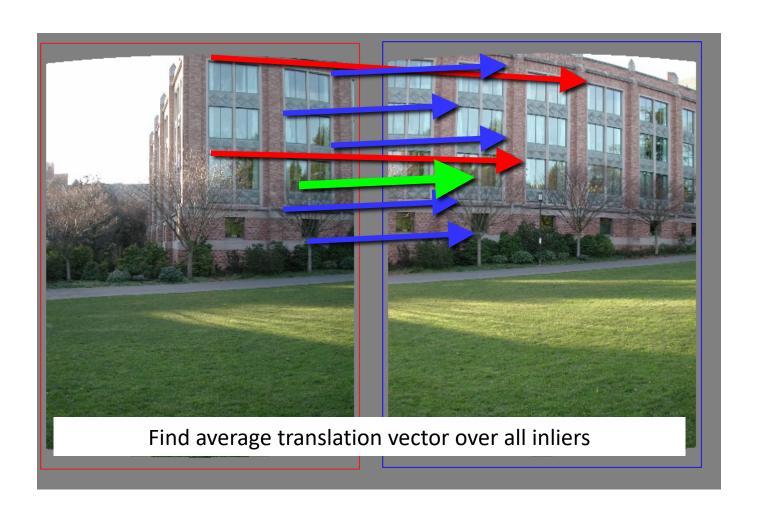
Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

Final step: least squares fit



- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins

- There are many other types of voting schemes
 - E.g., Hough transforms...

Panoramas

Now we know how to create panoramas!

- Given two images:
 - Step 1: Detect features
 - Step 2: Match features
 - Step 3: Compute a homography using RANSAC
 - Step 4: Combine the images together (somehow)
- What if we have more than two images?