
Scott Wehrwein
CSCI 497/597P: Computer Vision

Feature Detection:
Descriptors and Matching

Reading

• Szeliski: 4.1.2, 4.1.3

Happenings
• Tuesday, 1/22 – CS SMATE Faculty Candidate Gerald

Raj: Research Talk – 4 pm in CF 316
• Tuesday, 1/22 – ACM Research Talk: Computer Vision

with Dr. Scott Wehrwein – 5 pm in CF 316
• Wednesday, 1/23 – CS SMATE Faculty Candidate

Gerald Raj: Teaching Talk – 4 pm in CF 316
• Wednesday, 1/23 – Peer Lecture Series: CS Success

Workshop – 5 pm in CF 420
• Thursday, 1/24 – CS SMATE Faculty Candidate Cecily

Heiner: Research Talk – 4 pm in CF 316
• Friday, 1/25 – CS SMATE Faculty Candidate Cecily

Heiner: Teaching Talk – 4 pm in CF 115

https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Facm-research-talk-computer-vision-dr-scott-wehrwein&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca046257f667b4eba5f0e08d67cd8d665%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636833668116546886&sdata=L%2Fgsw0qgTTViYM%2Fg5%2B%2FwzUNRUXrlAoSCaVSi0MQ6hXs%3D&reserved=0
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcse.wwu.edu%2Fcomputer-science%2Fevent%2Fpeer-lecture-series-cs-success&data=02%7C01%7Cwehrwes%40wwu.edu%7Ca046257f667b4eba5f0e08d67cd8d665%7Cdc46140ce26f43efb0ae00f257f478ff%7C0%7C0%7C636833668116556891&sdata=pt3nc5oWVzD4NQZ4F0DWVfm%2FH3kEP%2FzltKITqPalG8c%3D&reserved=0

Goals

• Understand the invariance and covariance
properties of the Harris operator

• Understand how to implement multi-scale
keypoint detection and description.

• Understand the details of the MOPS feature
descriptor

• Understand the general idea behind the SIFT
feature descriptor

Local features: main components
1) Detection: Identify the interest

points

2) Description: Extract vector
feature descriptor surrounding
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

],,[)1()1(
11 dxx !=x

],,[)2()2(
12 dxx !=x

Kristen Grauman

Snoop demo

What makes a good feature?

Invariance vs. uniqueness

• Invariance:
– Our ability to detect and match the feature

shouldn’t change even if image is transformed

• Uniqueness:
– The feature should be highly unique for each

point: it should only match the same “real-world”
feature.

Image transformations
• Geometric

Rotation

Scale

• Photometric
Intensity change

Invariance in local features
Ideally, we want to find features that are invariant to transformations

– geometric invariance: translation, rotation, scale
– photometric invariance: brightness, exposure, …

Feature Descriptors

Harris detector: Invariance properties
-- Image translation

• Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Harris detector: Invariance properties
-- Image rotation

Second moment ellipse rotates but its shape
(i.e. eigenvalues) remains the same
Or: direction of max and min error increase
rotates, but amount does not.

Corner location is covariant w.r.t. rotation

Harris detector: Invariance properties –
Affine intensity change

• How about intensity shift I ® I + b ?

• What about intensity scaling: I ® a I

threshold

Harris
score

x (image coordinate)

Harris
score

x (image coordinate)

Partially invariant to affine intensity change

I ® a I + b

Harris Detector: Invariance Properties
• Invariant to scaling (e.g, upsampling?)

Corner

Harris Detector: Invariance Properties
• Invariant to scaling (e.g, upsampling?)

All points will be
classified as edges

Corner

Not invariant to scaling

More on this next week…

Suppose you’re looking for corners:

Keypoint detection:
– find local maxima in H(x,y)

Scale-invariant keypoint detection:
– find local maxima in H(x,y,scale)

Scale invariant detection

Scale invariant detection
Suppose you’re looking for corners

Key idea: find scale that gives local maximum of H(x,y)
– Now searching over both position and scale

Slide from Tinne Tuytelaars

Lindeberg et al, 1996

Slide from Tinne Tuytelaars

Lindeberg et al., 1996

Implementation

• Instead of computing H for larger and larger
windows, we can implement using a fixed
window size with a Gaussian pyramid

(may perform better with in-
between levels, e.g. a ¾-size image)

Feature descriptors
We know how to detect good points
Next question: How to match them?

Answer: Come up with a descriptor for each point,
find similar descriptors between the two images

?

Feature descriptors
We know how to detect good points
Next question: How to match them?

Lots of possibilities
– Simple option: match square windows around the point
– State of the art approach: SIFT

• David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

?

http://www.cs.ubc.ca/~lowe/keypoints/

• Find dominant orientation of the image patch
– E.g., given by xmax, the eigenvector of H corresponding to lmax (the

larger eigenvalue)
– Or simply using the direction of the gradient.
– Rotate the patch according to this angle

Rotation invariance for
feature descriptors

Figure by Matthew Brown

Take 40x40 square window
around detected feature, and:
1. Scale to 1/5 size (filter first to

avoid aliasing!)

2. Rotate to horizontal

3. Sample 8x8 square window
centered at feature

4. Normalize the intensity values
by subtracting the mean and
dividing by the standard
deviation in the window

CSE 576: Computer Vision

Multiscale Oriented PatcheS descriptor

8 pixels40 pixels

Adapted from slide by Matthew Brown

Detections at multiple scales

Basic idea behind the SIFT descriptor:
• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient - 90°) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2p

angle histogram

SIFT descriptor
Full version of the descriptor:

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

• The SIFT paper actually gives a full feature
detection and description pipeline.

• Details in the paper:
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

• Quickly became a workhorse in computer
vision, remains a benchmark for faster / fancier
algorithms.

• Different applications have different tradeoffs:
• Gigapixel panorama stitching
• Panorama stitching on phones
• SLAM

Scale Invariant Feature Transform

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Example

sift

868 SIFT features

Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint
• Up to about 60 degree out of plane rotation

– Can handle significant changes in illumination
• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Other descriptors

• HOG: Histogram of Gradients (HOG)
– Dalal/Triggs
– Sliding window, pedestrian detection

• FREAK: Fast Retina Keypoint
– Perceptually motivated
– Used in Visual SLAM

• LIFT: Learned Invariant Feature Transform
– Learned via deep learning

https://arxiv.org/abs/1603.09114

https://arxiv.org/abs/1603.09114

Summary: Detection and Description

• Keypoint detection: repeatable
and distinctive
– Corners are most common
– Can also use edges, blobs, …

• Descriptors: robust and selective
– spatial histograms of orientation
– SIFT and variants are typically good

for stitching and recognition
– But, need not stick to one

Local features: main components
1) Detection: Identify the interest

points

2) Description: Extract vector
feature descriptor surrounding
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

],,[)1()1(
11 dxx !=x

],,[)2()2(
12 dxx !=x

Kristen Grauman

Which features match?

Feature matching

Given a feature in I1, how to find the best match
in I2?
1. Define distance function that compares two

descriptors
2. Test all the features in I2, find the one with min

distance

