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Harris Corner Detection



Reading

• Szeliski: 4.1



Announcements



Goals

• Gain intuition for using corners as image 
features and why they make good features

• Understand the mathematical derivation of 
the Harris corner detector

• Be prepared to implement Harris corner
detection



Why extract features?

• Motivation: panorama stitching
– We have two images – how do we combine them?
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Why extract features?

• Motivation: panorama stitching
– We have two images – how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images



Local features: main components
1) Detection: Identify the interest 

points

2) Description: Extract vector 
feature descriptor surrounding 
each interest point.

3) Matching: Determine 
correspondence between 
descriptors in two views
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Snoop demo

What makes a good feature?



Two desirable properties:

1. Uniqueness: features shouldn’t match each other if 
they don’t come from the same point in the scene. 
– Choose feature points centered in distinctive regions

2. Invariance: features should match if they do come 
from the same point in the scene, even captured 
under different conditions.
– Choose feature representations that are invariant to 

different capture conditions.
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(today)

(next time)



Uniqueness



Local measures of uniqueness

Suppose we only consider a small window of pixels
– What defines whether a feature is a good or bad 

candidate?

Credit: S. Seitz, D. Frolova, D. Simakov



Local measures of uniqueness

“flat” region:
no change in all 
directions

“edge”:  
no change along the 
edge direction

“corner”:
significant change in 
all directions

• How does the window change when you shift it?
• Shifting the window in any direction causes a big 

change

Credit: S. Seitz, D. Frolova, D. Simakov



Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences (SSD)
• this defines an SSD “error” E(u,v):

• We are happy if this error is high
• Slow to compute exactly for each pixel 

and each offset (u,v)

Harris corner detection:  the math

W
(u,v)



Harris corner detection: the math

• Remember Taylor 
series?



Taylor Series expansion of I:

If the motion (u,v) is small, then first order approximation is good

Plugging this into the error function E(u,v) …

Small motion assumption



Corner detection:  the math

Consider shifting the window W by (u,v)
• define an SSD “error” E(u,v):
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Corner detection:  the math

Consider shifting the window W by (u,v)
• define an SSD “error” E(u,v):

• Thus, E(u,v) is locally approximated as a quadratic error function

W
(u,v)



The surface E(u,v) is locally approximated by a quadratic form. 

The second moment matrix



The surface E(u,v) is locally approximated by a quadratic form. 

The second moment matrix

Let’s try to understand its shape.

How much we’re 
shifting the window 
in each direction

Characteristics of 
the local image 
patch computed 
from derivatives
inside that patch



Horizontal edge: 

u
v

E(u,v)

E(u, v) = Au2



Vertical edge: 

u
v

E(u,v)



General case
H tells us how much the image patch changes for a given 
(u,v) shift

We can visualize H as an ellipse with:

• axis lengths determined by the eigenvalues of H and

• orientation determined by the eigenvectors of H

direction of the 
slowest change

direction of the 
fastest change
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Ellipse equation:
lmax, lmin : eigenvalues of H



Quick eigenvalue/eigenvector review
The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar l is the eigenvalue corresponding to x
– The eigenvalues are found by solving:

– In our case, A = H is a 2x2 matrix, so we have

– The solution:

Once you know l, you find x by solving
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Corner detection:  the math

Eigenvalues and eigenvectors of H
• Define shift directions with the smallest and largest change in error
• xmax = direction of largest increase in E
• lmax = amount of increase in direction xmax

• xmin = direction of smallest increase in E
• lmin = amount of increase in direction xmin

xmin

xmax



Corner detection:  the math
How are lmax, xmax, lmin, and xmin relevant for feature detection?

• What’s our feature scoring function?



Corner detection:  the math
How are lmax, xmax, lmin, and xmin relevant for feature detection?

• What’s our feature scoring function?
Want E(u,v) to be large for small shifts in all directions

• the minimum of E(u,v) should be large, over all unit vectors [u v]
• this minimum is given by the smaller eigenvalue (lmin) of H



Interpreting the eigenvalues

l1

l2

“Corner”
l1 and l2 are large,
l1 ~ l2;
E increases in all 
directions

l1 and l2 are small;
E is almost constant 
in all directions

“Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

Classification of image points using eigenvalues of M:



Corner detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the H matrix from the entries in the gradient
• Compute the eigenvalues. 
• Find points with large response (lmin > threshold)
• Choose those points where lmin is a local maximum as features
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The Harris operator

lmin is a variant of the “Harris operator” for feature detection

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22

• Very similar to lmin but less expensive (no square root)
• Called the “Harris Corner Detector” or “Harris Operator”
• Lots of other detectors, this is one of the most popular
• Sometimes use this instead:



The Harris operator

Harris 
operator



Harris detector example



f value (red high, blue low)



Threshold (f > value) 



Find local maxima of f



Harris features (in red)



Weighting the derivatives

• In practice, using a simple window W doesn’t 
work too well

• Instead, we’ll weight each derivative value 
based on its distance from the center pixel



Harris Detector [Harris88]

• Second moment matrix
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1. Image 
derivatives

2. Square of 
derivatives

3. Gaussian 
filter g(sI)
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4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression
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(optionally, blur first)



Harris Corners – Why so complicated?
• Can’t we just check for regions with lots of 

gradients in the x and y directions?
– No! A diagonal line would satisfy that criteria

Current 
Window



Questions?


