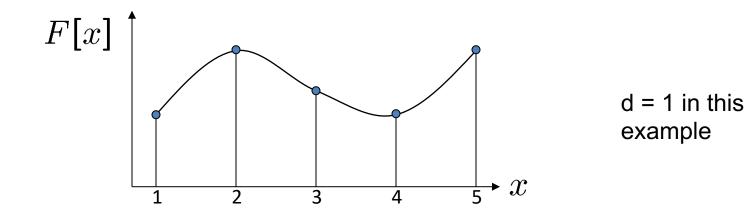
CSCI 497/597P: Computer Vision Scott Wehrwein

Resampling: Upsampling Features - Overview

Upsampling

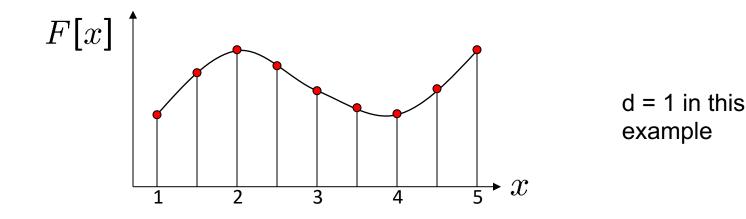
- This image is too small for this screen: M
- How can we make it 10 times as big?
- Simplest approach:
 repeat each row
 and column 10 times
- ("Nearest neighbor interpolation")



Recall that a digital images is formed as follows:

 $F[x, y] = quantize\{f(xd, yd)\}$

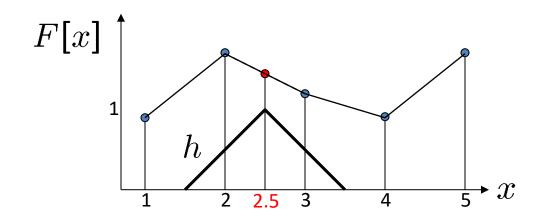
- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale



Recall that a digital images is formed as follows:

 $F[x, y] = \text{quantize}\{f(xd, yd)\}$

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale



d = 1 in this example

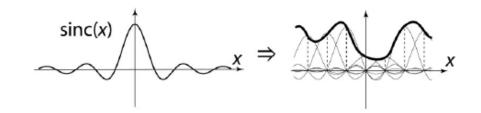
- What if we don't know f ?
 - Guess an approximation: \tilde{f}
 - Can be done in a principled way: filtering
 - Convert F to a continuous function:

 $f_F(x) = F(\frac{x}{d})$ when $\frac{x}{d}$ is an integer, 0 otherwise

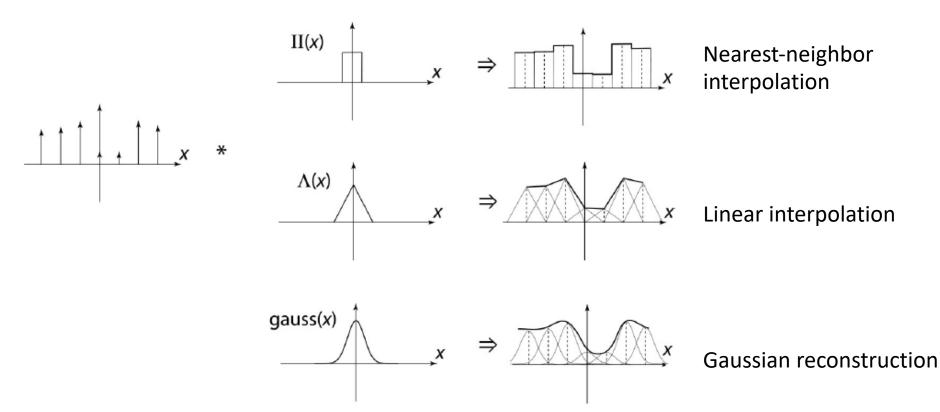
• Reconstruct by convolution with a *reconstruction filter, h*

$$\tilde{f} = h * f_F$$

Adapted from: S. Seitz



"Ideal" reconstruction



Source: B. Curless

• What does the 2D version of this hat function look like?

h(x)

performs linear interpolation

0	0	0
1	2	1
0	0	0

• What does the 2D version of this hat function look like?

h(x)

performs linear interpolation

Hint: try the following convolution:

0	0	0
1	2	1
0	0	0

	0	1	0
*	0	2	0
	0	1	0

• What does the 2D version of this hat function look like?

h(x)

performs linear interpolation

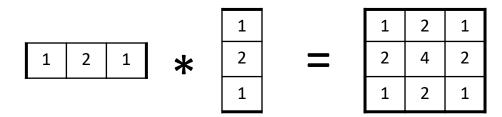
Hint: try the following convolution:

• What does the 2D version of this hat function look like?

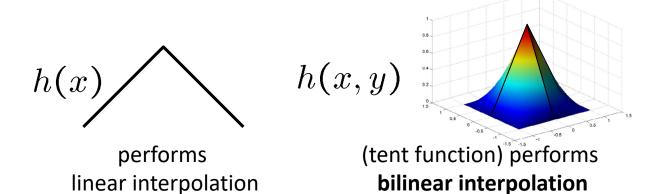
h(x)

performs linear interpolation

Hint: try the following convolution:



• What does the 2D version of this hat function look like?

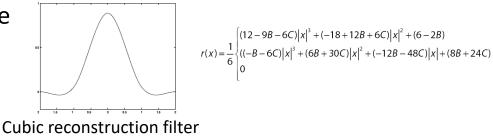


Often implemented without cross-correlation

• E.g., <u>http://en.wikipedia.org/wiki/Bilinear_interpolation</u>

Better filters give better resampled images

• Bicubic is common choice



|x| < 1

 $1 \le |x| < 2$ otherwise

Upsampling images

Step 1: blow up to original size with 0's in between

Upsampling images

Step 2: Convolve with upsampling filter (here: Gaussian)

Original image: 🚺 x 10

Nearest-neighbor interpolation

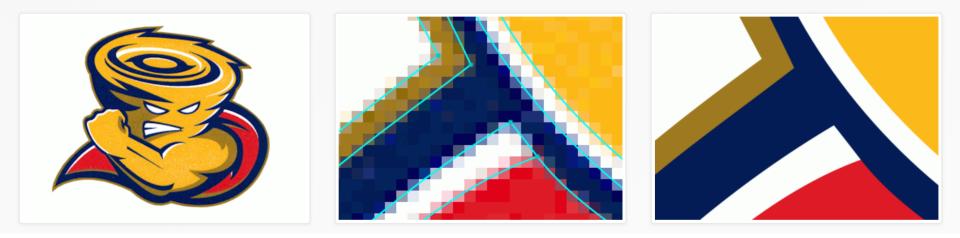
Bilinear interpolation

Bicubic interpolation

Also used for *resampling*

Raster-to-vector graphics

Simply the Best Auto-Tracer in the World



Depixelating Pixel Art

"Yoshi" Input (20 × 30 Pixels) Adobe Live Trace

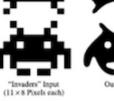
xe 📕

"Axe Battler" Input (43×71 Pixels)

Photo Zoom 4

"Bomberman" Input (15×23 Pixels)

' 4



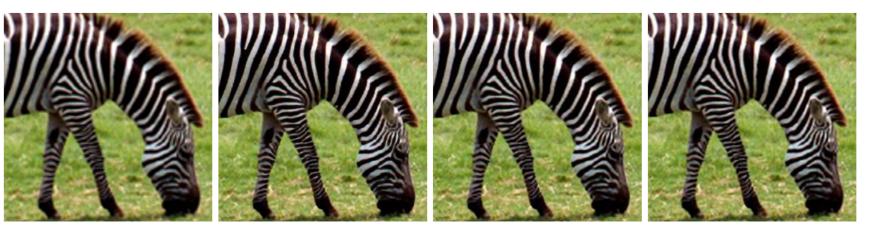
Our Result

hq4x

"386" Input (25×31 Pixels)

.

Modern methods



(a) Bicubic

(b) SRCNN

(c) A+

(d) RAISR

(e) Bicubic

(f) SRCNN

(g) A+

(h) RAISR

From Romano, et al: RAISR: Rapid and Accurate Image Super Resolution, https://arxiv.org/abs/1606.01299

Questions?

CSCI 497/597P: Computer Vision Scott Wehrwein

Features - Overview

Reading

• Szeliski: 4.1

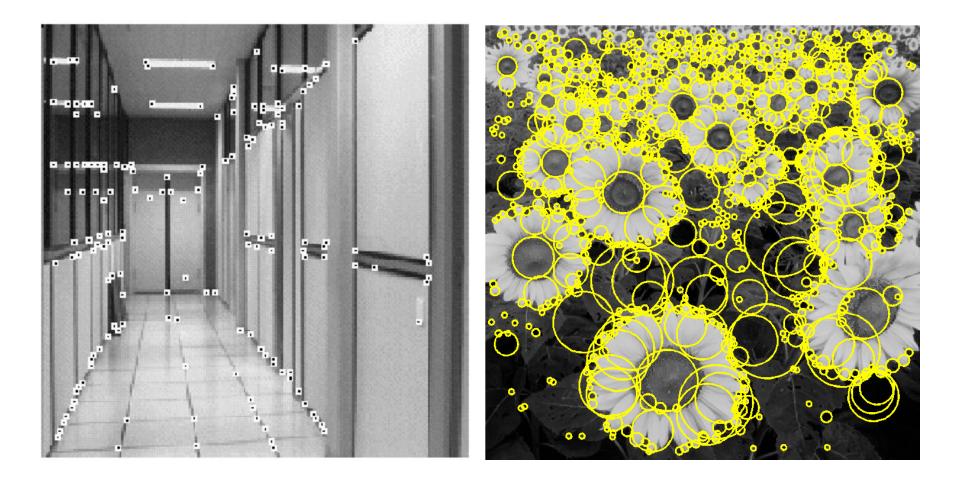
Announcements

- Email me if you're not enrolled on Piazza
- Please post questions to Piazza so others can benefit from the answers.

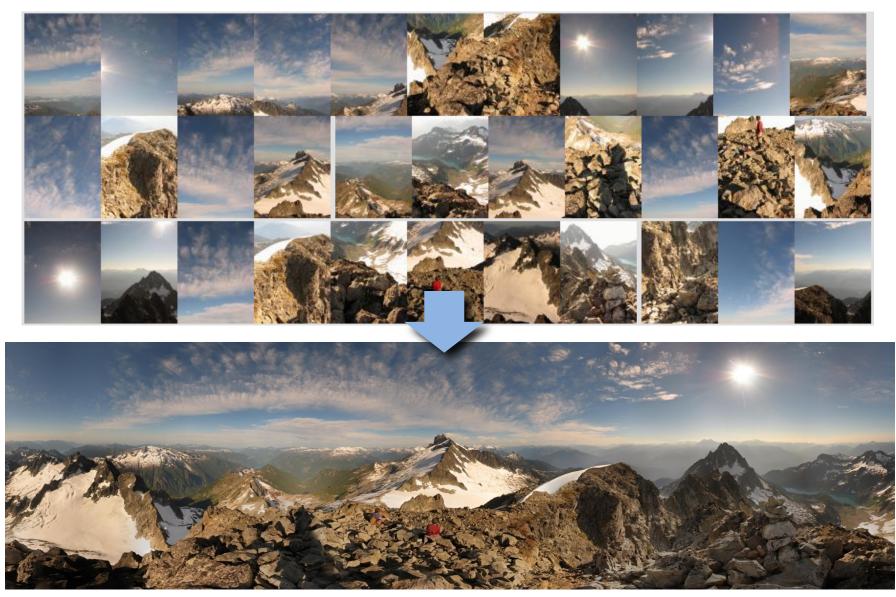
Goals

- Understand the motivation for detecting, describing, and matching local image features.
- Understand the desirable properties of local image features and their descriptors:
 - Uniqueness
 - Invariance
- Gain intuition for corners as image features and why they make good features

Feature extraction: Corners and blobs



Motivation: Automatic panoramas



Credit: Matt Brown

Motivation: Automatic panoramas

GigaPan http://gigapan.com/

Also see Google Zoom Views: <u>https://www.google.com/culturalinstitute/beta/project/gigapixels</u>

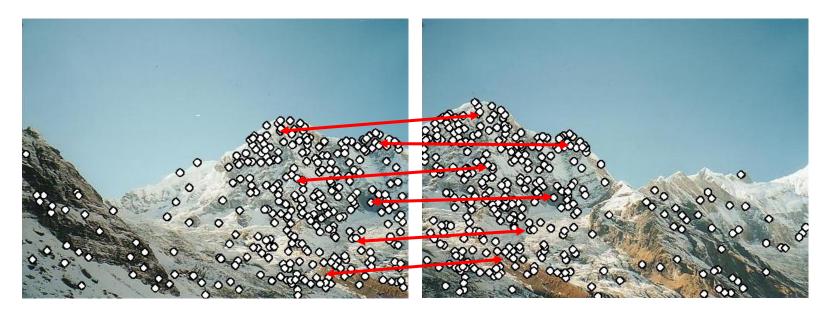
Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Why extract features?

• Motivation: panorama stitching

– We have two images – how do we combine them?



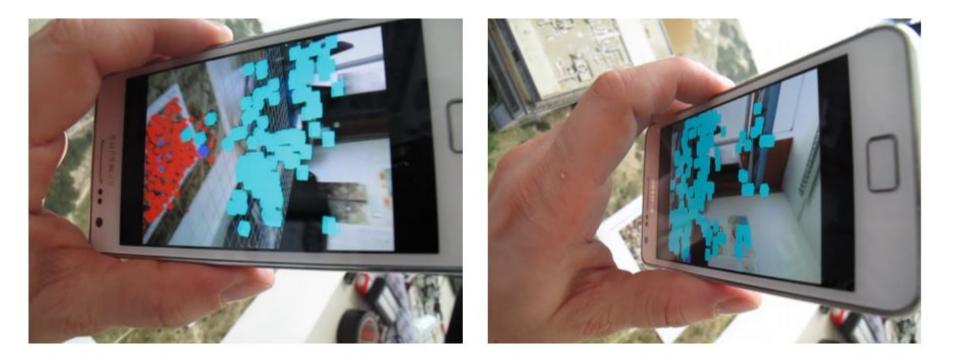
Step 1: extract features Step 2: match features

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features Step 2: match features Step 3: align images

Application: Visual SLAM



https://youtu.be/gAbhM59N54k?t=26

Image matching

by <u>Diva Sian</u>

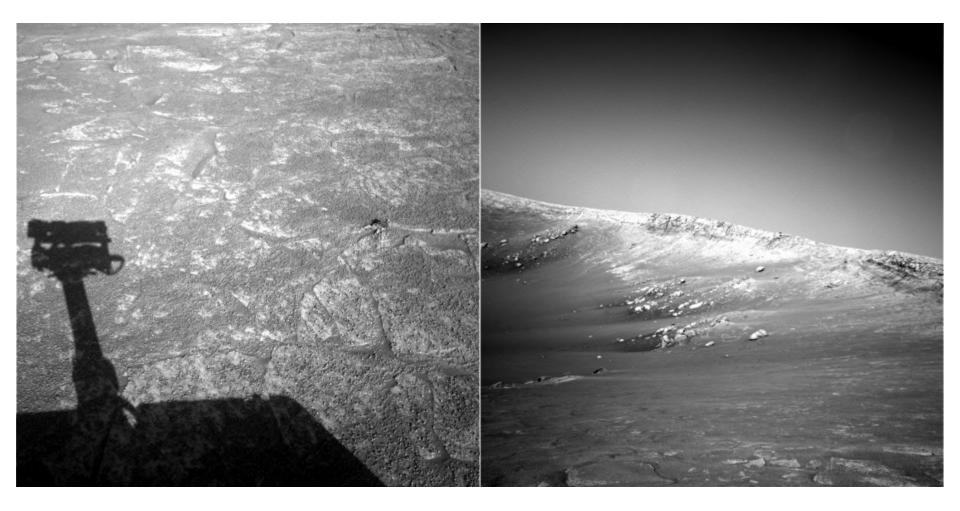
by swashford

Harder case

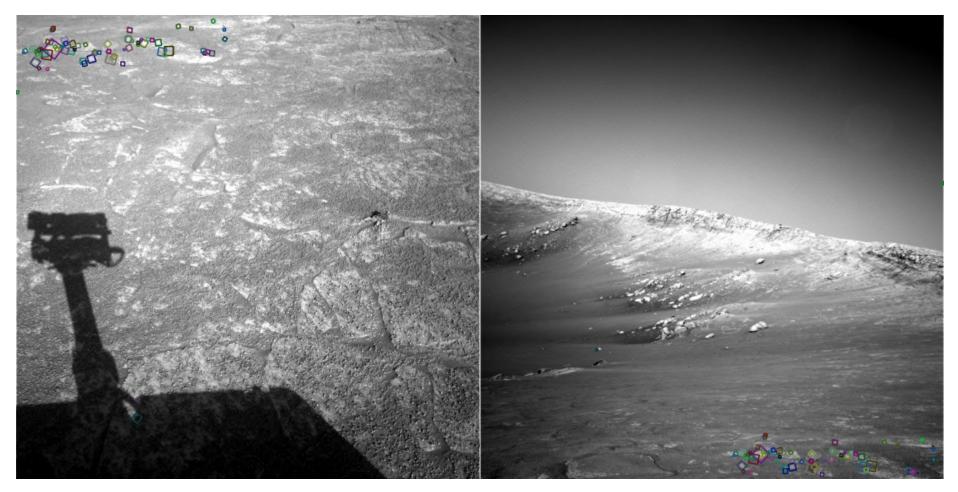
by <u>Diva Sian</u>

by <u>scgbt</u>

Harder still?

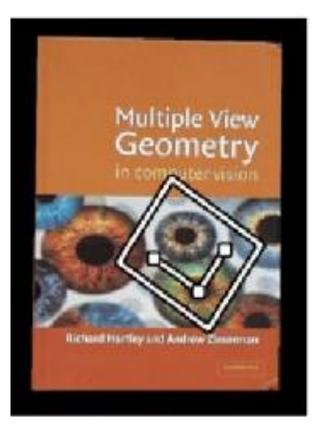


Answer below (look for tiny colored squares...)



NASA Mars Rover images with SIFT feature matches

Feature Matching



Feature Matching

Advantages of local features

Locality

features are local, so robust to occlusion and clutter
 Quantity

- hundreds or thousands in a single image

Distinctiveness:

– can differentiate a large database of objects

Efficiency

real-time performance achievable

More motivation...

Feature points are used for:

- Image alignment
 - (e.g., mosaics)
- 3D reconstruction
- Motion tracking
 - (e.g. for AR)
- Object recognition
- Image retrieval
- Robot navigation
- ... other

Approach

- **1. Feature detection**: find it
- 2. Feature descriptor: represent it
- 3. Feature matching: match it

Feature tracking: track it, when motion

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = \begin{bmatrix} x_1^{(1)}, \dots, x_d^{(1)} \\ x_d \end{bmatrix}$ each interest point.

3) Matching: Determine correspondence between descriptors in two views

