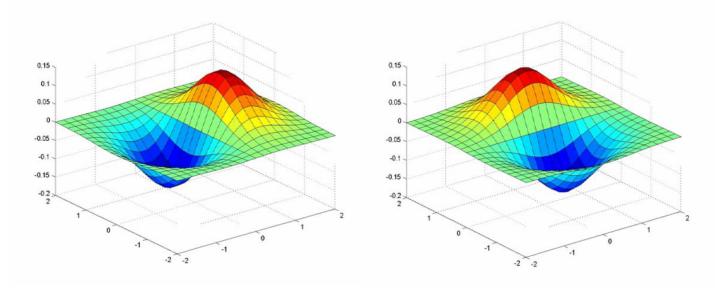
CSCI 497/597P: Computer Vision Scott Wehrwein

Edge Detection, Continued



Reading

• Szeliski, Chapter 4.2

Announcements

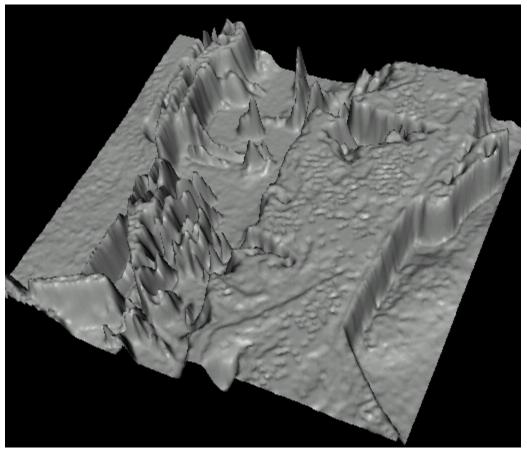
Goals

• Understand the basics of edge detection:

 The sobel operator as an approximation of the image gradient in the presence of noise.

 Understand the use of non-maximum suppression to localize edges from smoothed gradients.

Images as functions...



 Edges look like steep cliffs

Characterizing edges

• An edge is a place of *rapid change* in the image intensity function

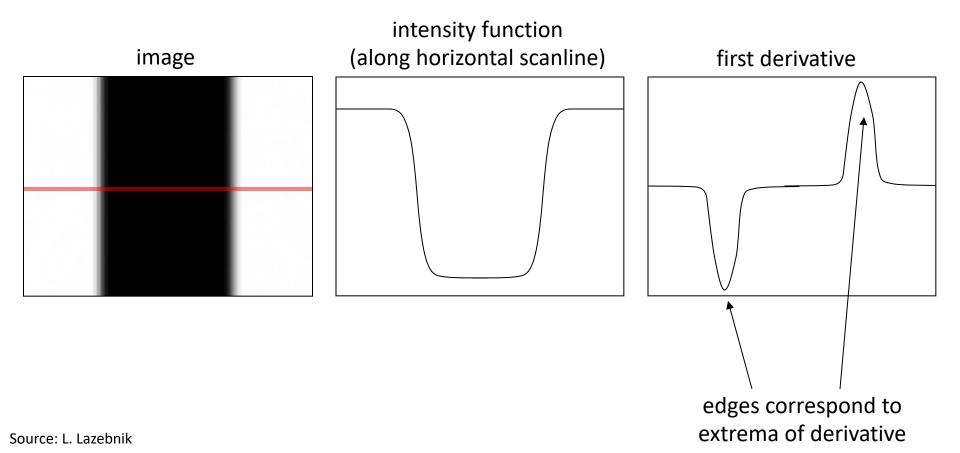
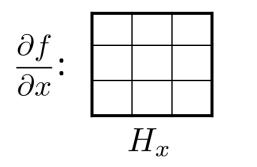


Image derivatives

- How can we differentiate a *digital* image F[x,y]?
 - Option 1: reconstruct a continuous image, *f*, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?



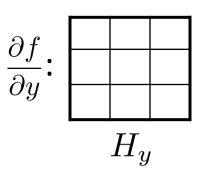


Image gradient

• The *gradient* of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

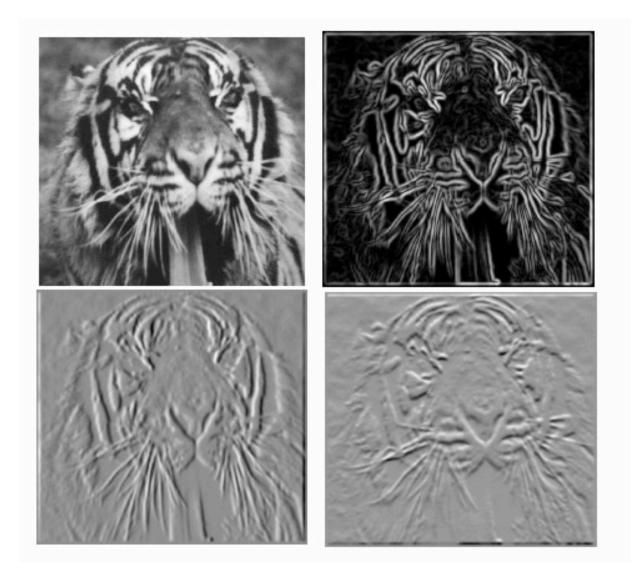
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Image gradient



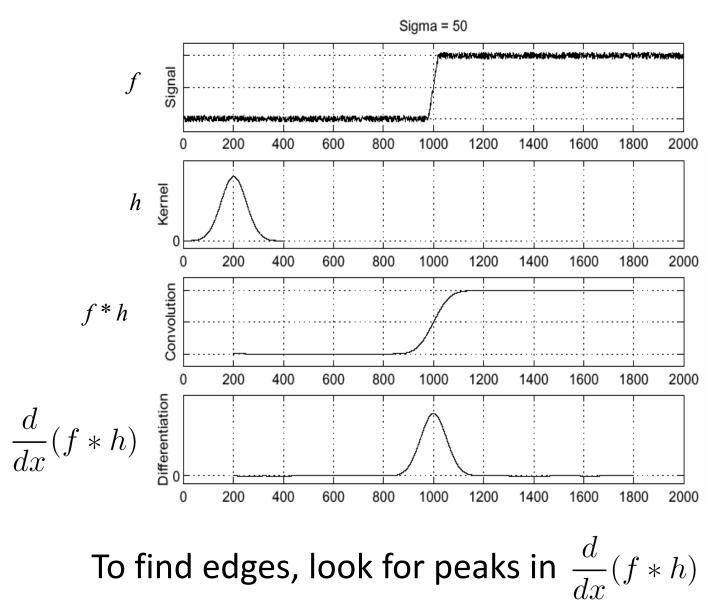
Effects of noise



Where is the edge?

Source: S. Seitz

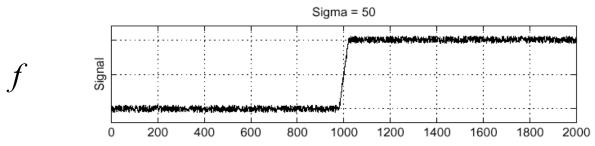
Solution: smooth first



Source: S. Seitz

Associative property of convolution

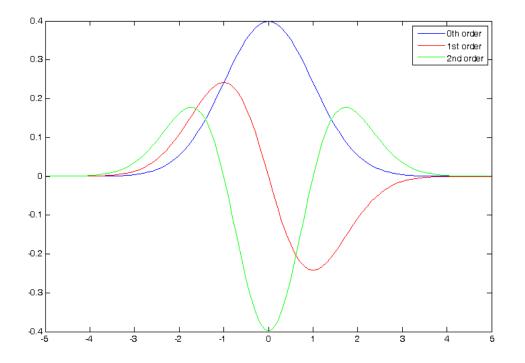
- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f * h) = f * \frac{d}{dx}h$
- This saves us one operation:



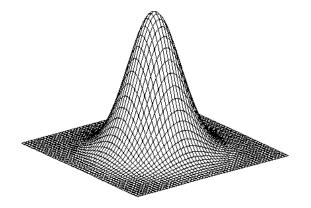
The 1D Gaussian and its derivatives

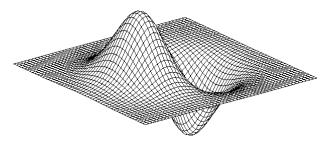
$$G_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}$$
$$G_{\sigma}'(x) = \frac{d}{dx} G_{\sigma}(x) = -\frac{1}{\sigma} \left(\frac{x}{\sigma}\right) G_{\sigma}(x)$$

1

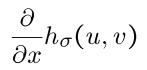


2D edge detection filters



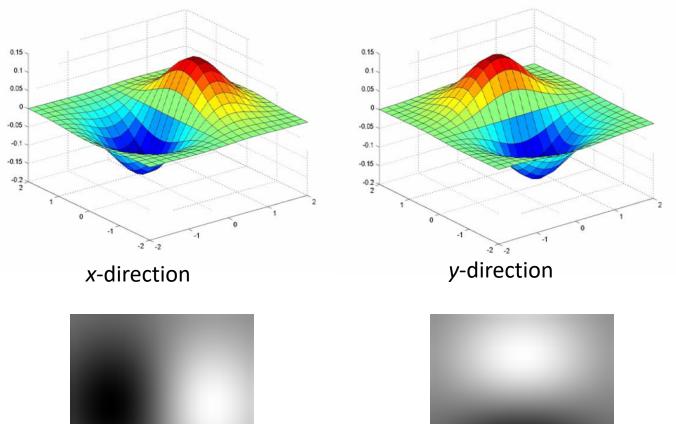


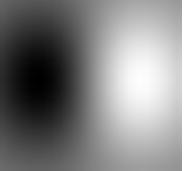
derivative of Gaussian (x)



Gaussian $h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}}$

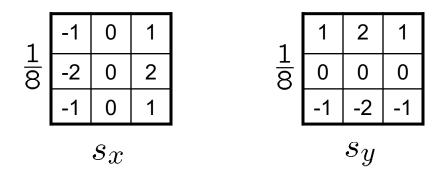
Derivative of Gaussian filter





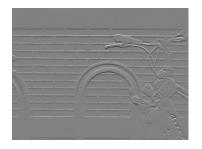
The Sobel operator

• Common approximation of derivative of Gaussian



- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient magnitude

Sobel operator: example



Source: Wikipedia

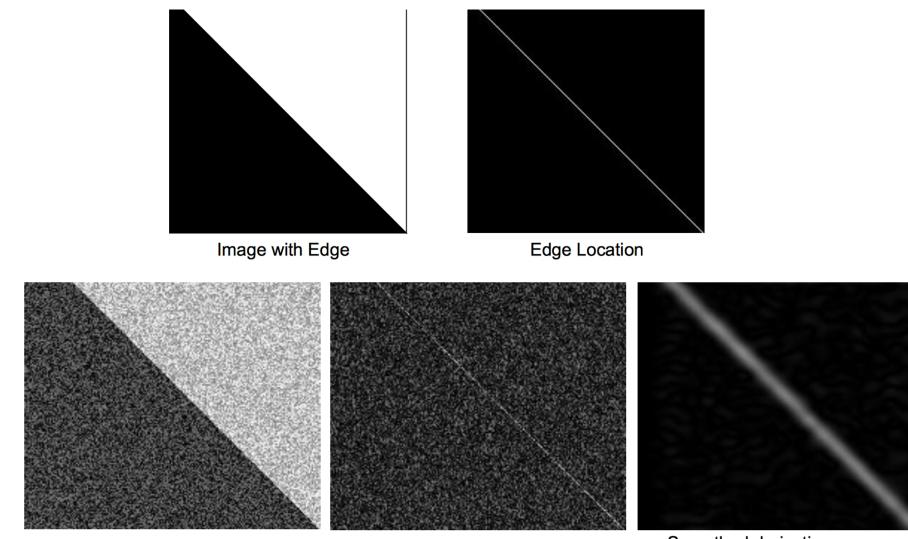


Image + Noise

Derivatives detect edge and noise

Smoothed derivative removes noise, but blurs edge

Criteria for a good boundary detector

- Criteria for a good boundary detector:
 - Good detection: Fire only on real edges, not anywhere else
 - Good localization
 - the edges detected must be as close as possible to the true edges
 - the detector must return one point only for each true edge point

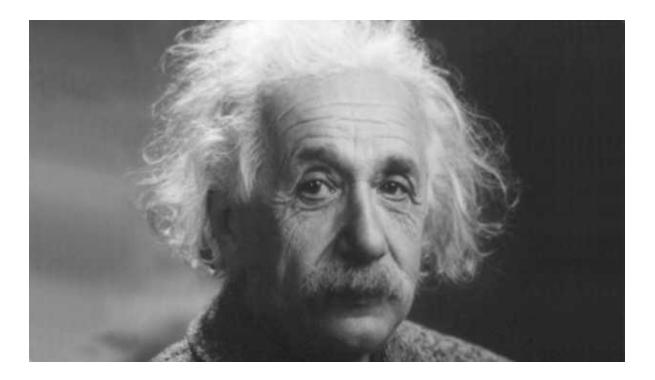
Canny edge detector

- The classic edge detector
- Baseline for all later work on grouping
- Theoretical model: step-edges corrupted by additive Gaussian noise

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

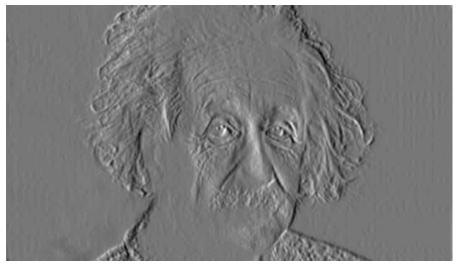
22,000 citations!

Example

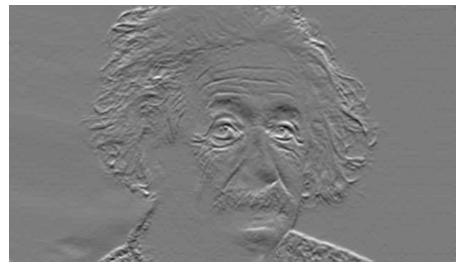


original image

Compute Gradients (DoG)



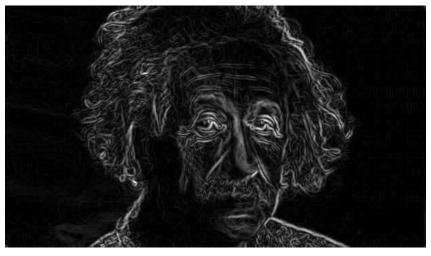
X-Derivative of Gaussian



Y-Derivative of Gaussian

Gradient magnitude and orientation

• Orientation is undefined at pixels with 0 gradient



Magnitude

Orientation theta = numpy.arctan2(gy, gx)

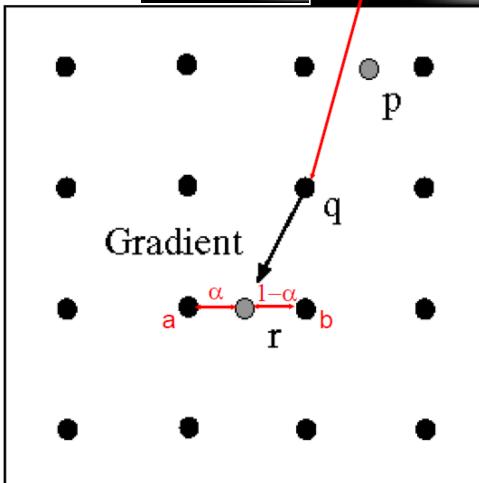
Non-maximum suppression for each orientation

Pixel q is a maximum if it is larger than p and r

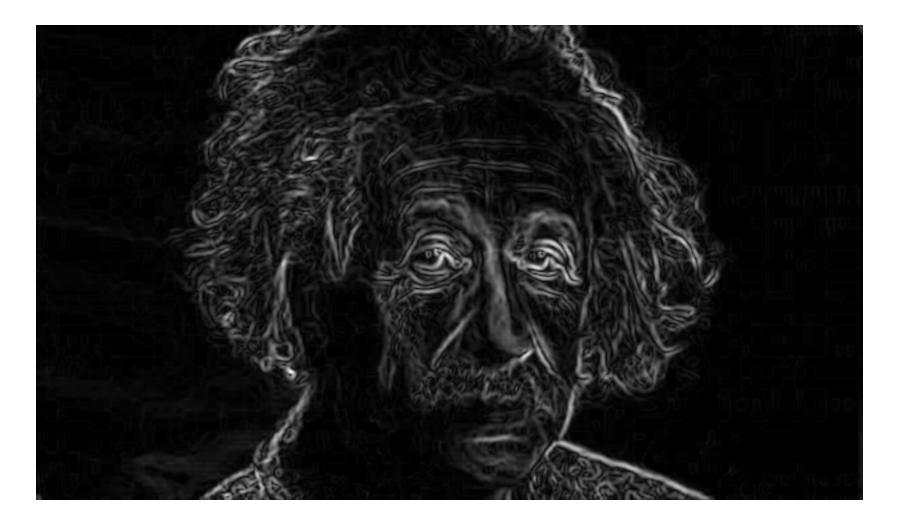
p and r's locations are determined by the gradient orientation

Their intensity is determined by linear interpolation.

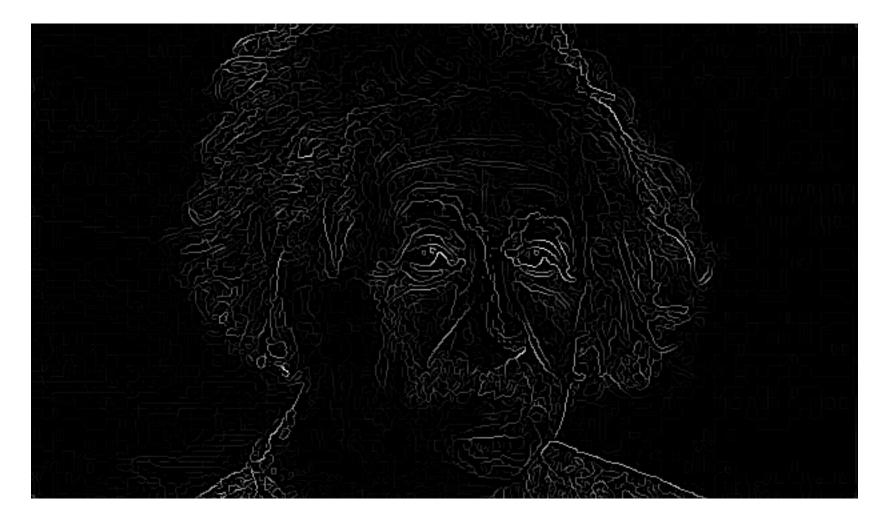
Source: D. Forsyth



Before Non-max Suppression

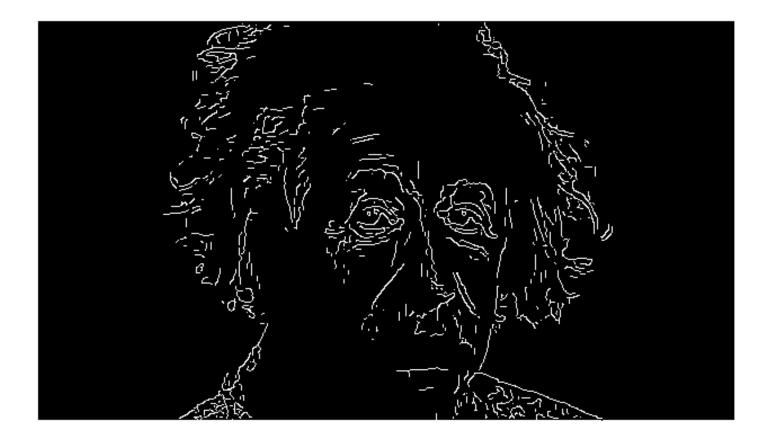


After Non-max Suppression

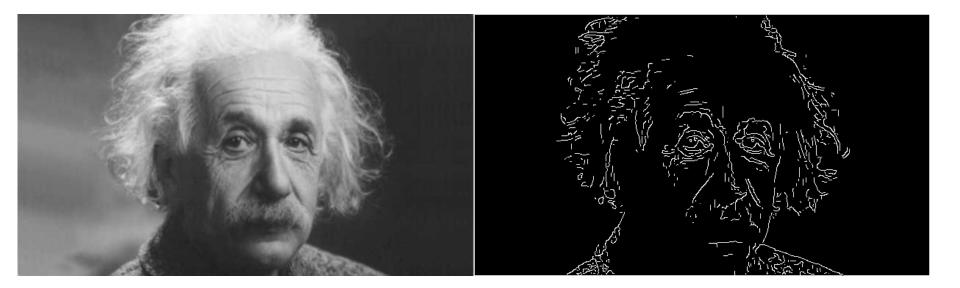


Hysteresis thresholding

- Threshold at low/high levels to get weak/strong edge pixels
- Do connected components, starting from strong edge pixels



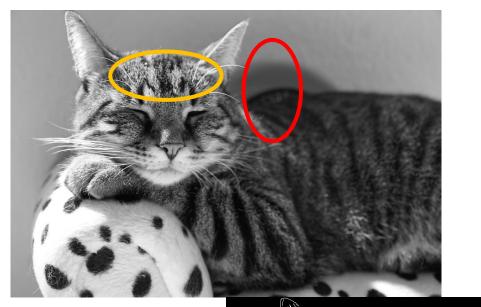
Final Canny Edges

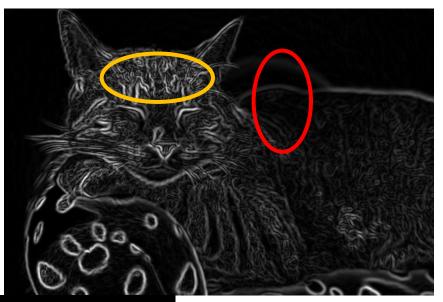


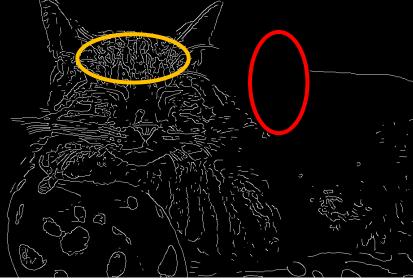
Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

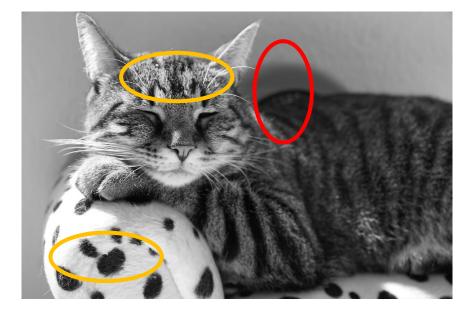
Does Canny always work?





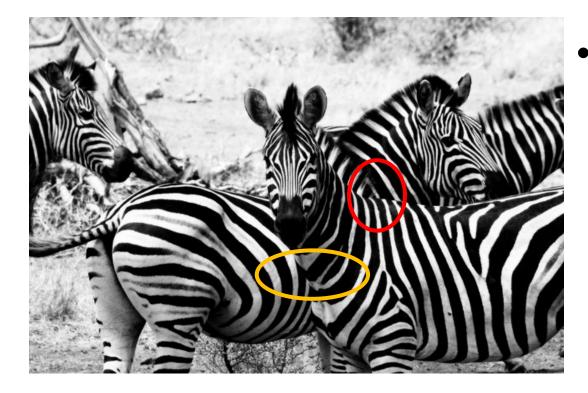


The challenges of edge detection



- Texture
- Low-contrast boundaries

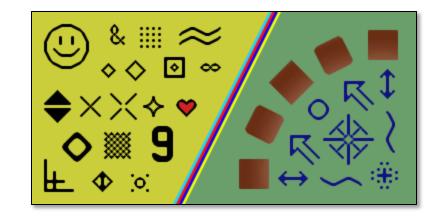
The challenges of edge detection



 Higher-level information

CSCI 497/597P: Computer Vision Scott Wehrwein

Image Resampling & Interpolation



Reading

• Szeliski, Chapter 3.5

Announcements

Goals

- Know how to downsample an image naively
- Gain some intuition for why that's a bad idea
- Know how and why to build a Gaussian Pyramid
- Understand how to upsample an image naively
- Know how to use

Image

This image is too big to fit on the screen. How can we generate a half-sized version?

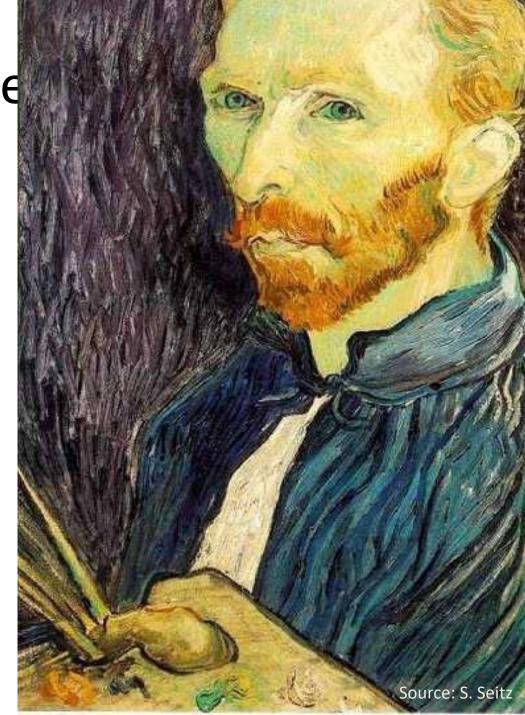
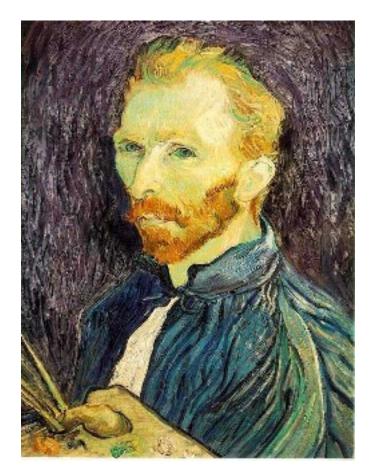


Image sub-sampling

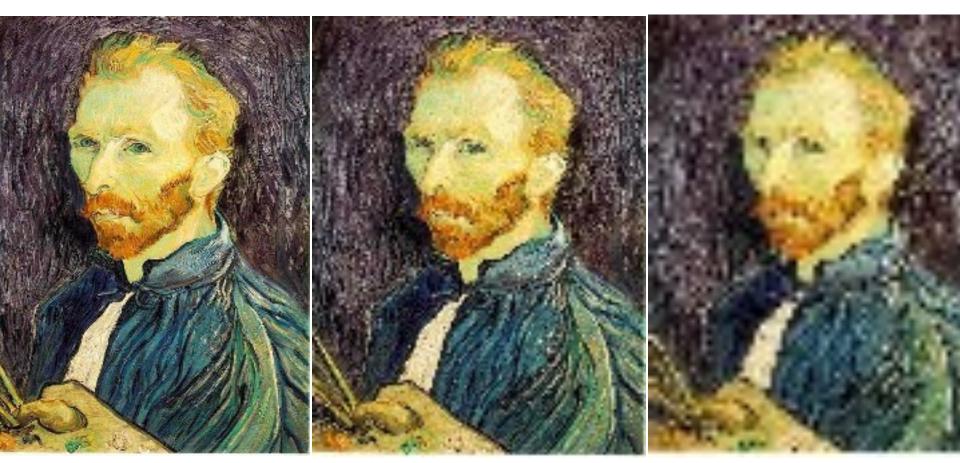


Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

1/8

1/4

Image sub-sampling



1/2

1/4 (2x zoom)

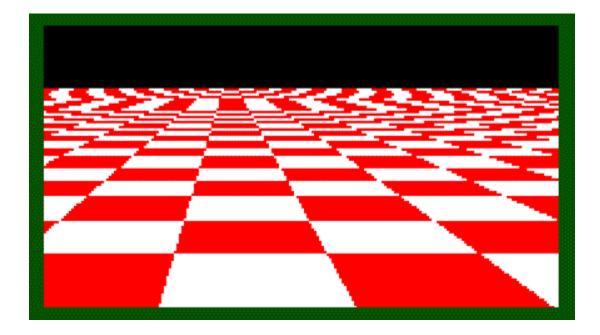
1/8 (4x zoom)

Why does this look so crufty?

Source: S. Seitz

Image sub-sampling – another example

Even worse for synthetic images



Source: L. Zhang

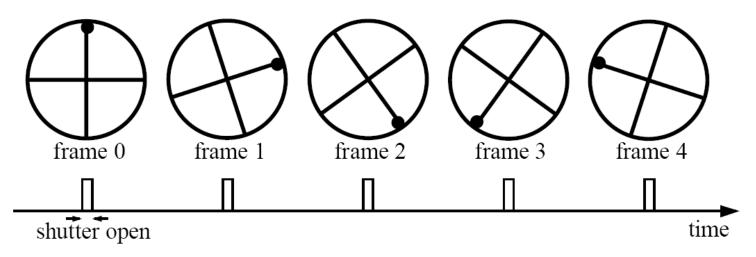
Aliasing

- Occurs when your sampling rate is not high enough to capture the amount of detail in your image
- Can give you the wrong signal/image—an *alias*
- To do sampling right, need to understand the structure of your signal/image
- Enter Monsieur Fourier...
 - "But what is the Fourier Transform? A visual introduction."
 <u>https://www.youtube.com/watch?v=spUNpyF58BY&t=444s</u>
- To avoid aliasing:
 - sampling rate \geq 2 * max frequency in the image
 - said another way: ≥ two samples per cycle
 - This minimum sampling rate is called the Nyquist rate

Wagon-wheel effect

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

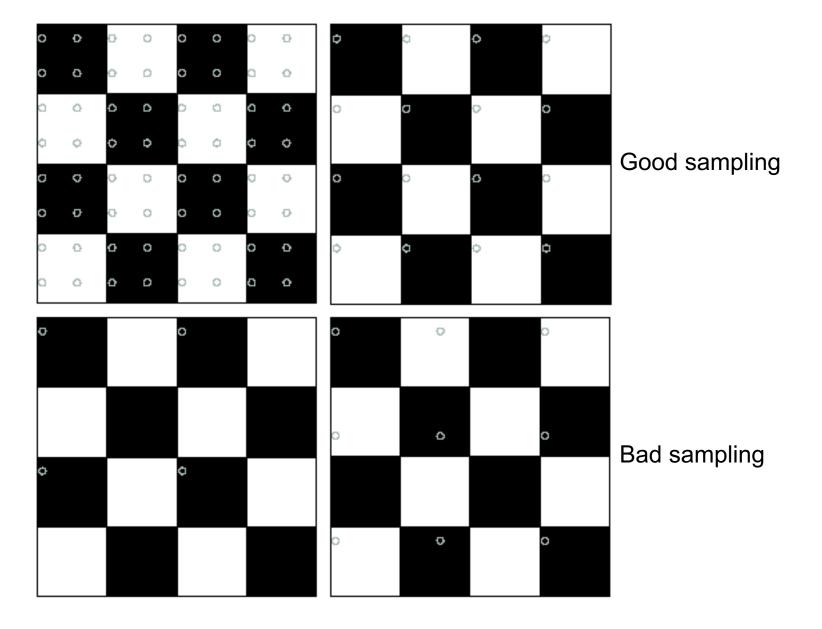


Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

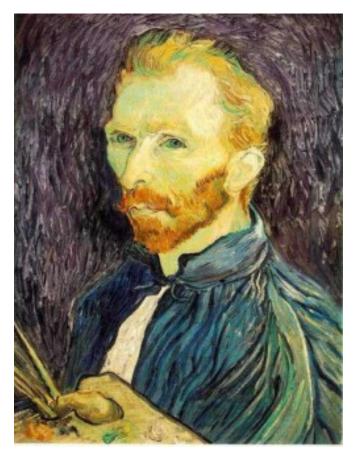
http://www.michaelbach.de/ot/mot-wagonWheel/index.html https://en.wikipedia.org/wiki/Wagon-wheel_effect

Source: L. Zhang

Nyquist limit – 2D example



Gaussian pre-filtering



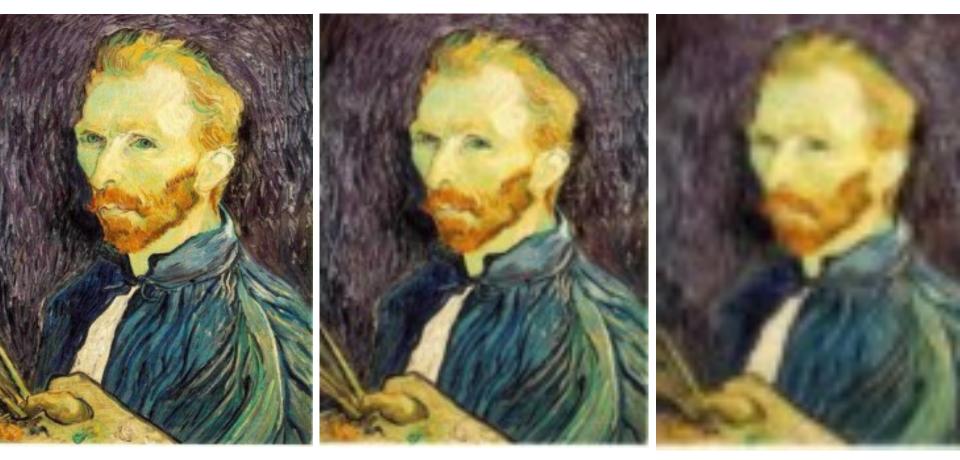
G 1/8

G 1/4

Gaussian 1/2

• Solution: filter the image, then subsample

Subsampling with Gaussian pre-filtering

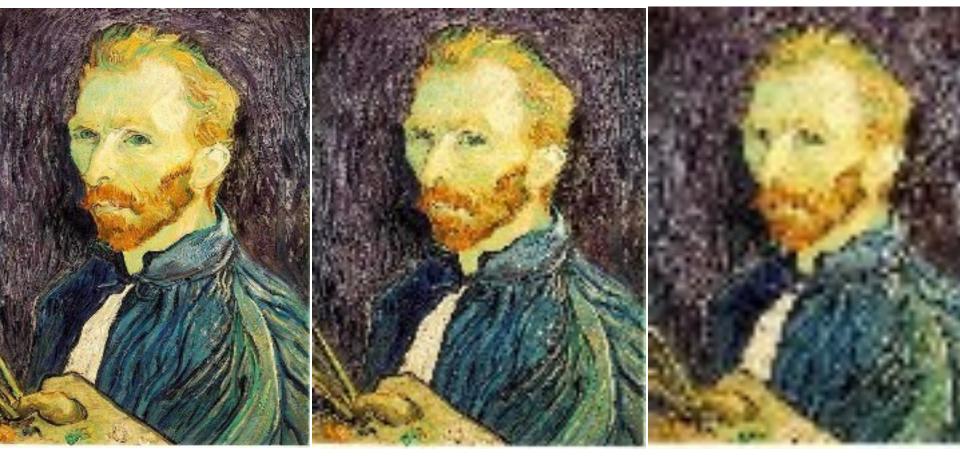


Gaussian 1/2

G 1/8

• Solution: filter the image, then subsample

Compare with...



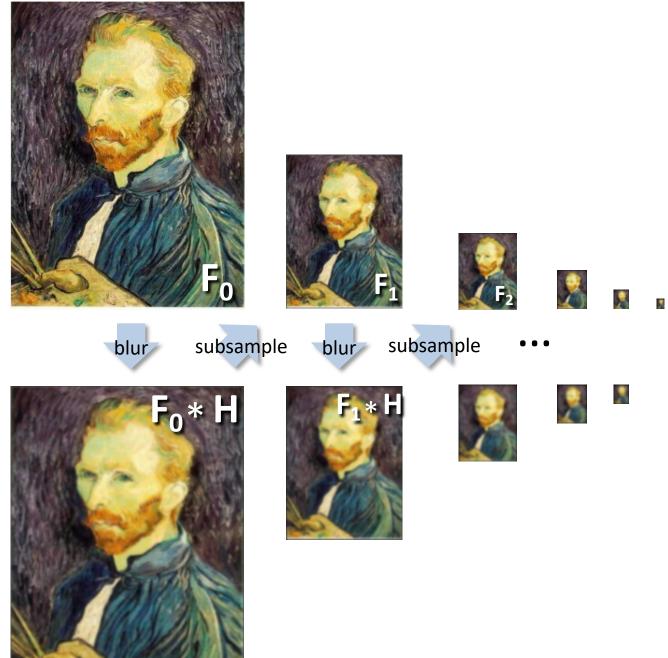
1/2

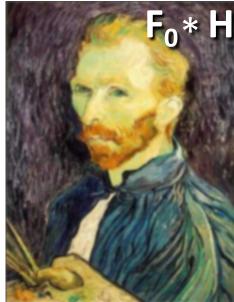
1/4 (2x zoom)

1/8 (4x zoom)

Gaussian pre-filtering

• Solution: filter the image, then subsample

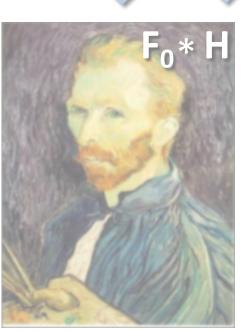




Gaussian pyramid

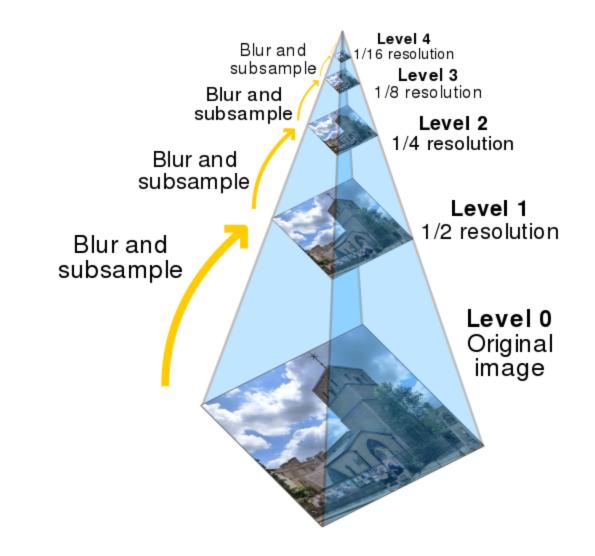
subsample

subsample blur



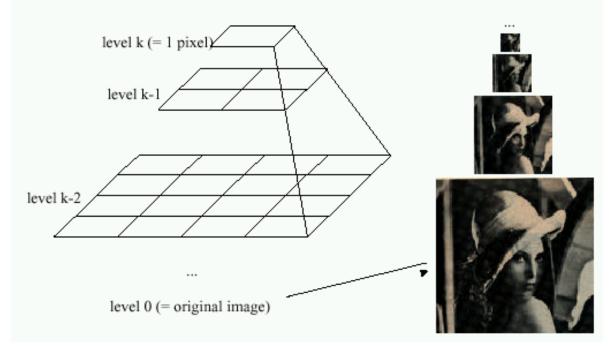
2

.



Gaussian pyramids [Burt and Adelson, 1983]

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)

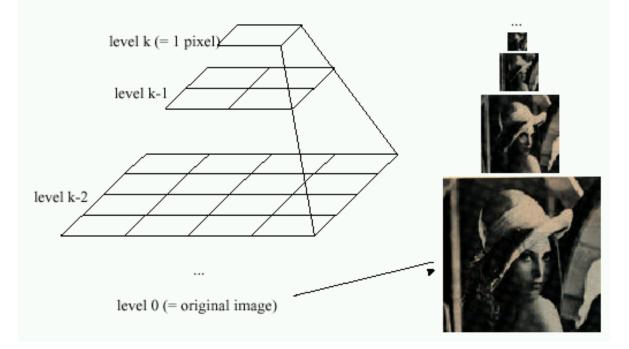


- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to *wavelet transform*

Gaussian Pyramids have all sorts of applications in computer vision

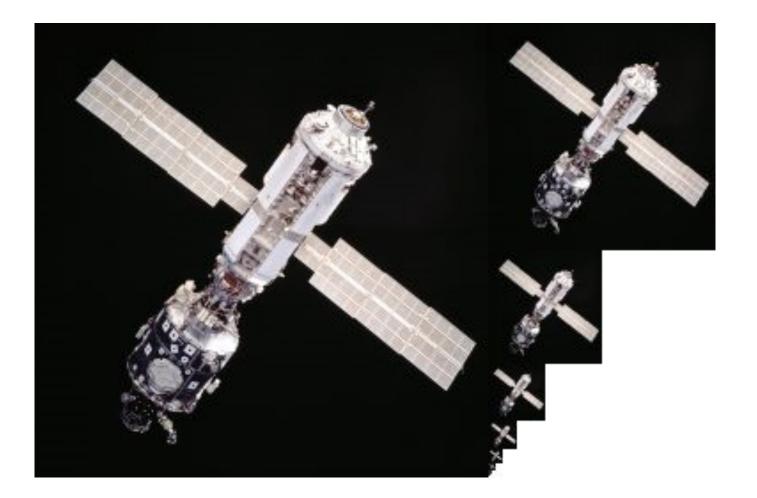
Gaussian pyramids [Burt and Adelson, 1983]

Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2^kx2^k images (assuming N=2^k)



How much space does a Gaussian pyramid take compared to the original image?

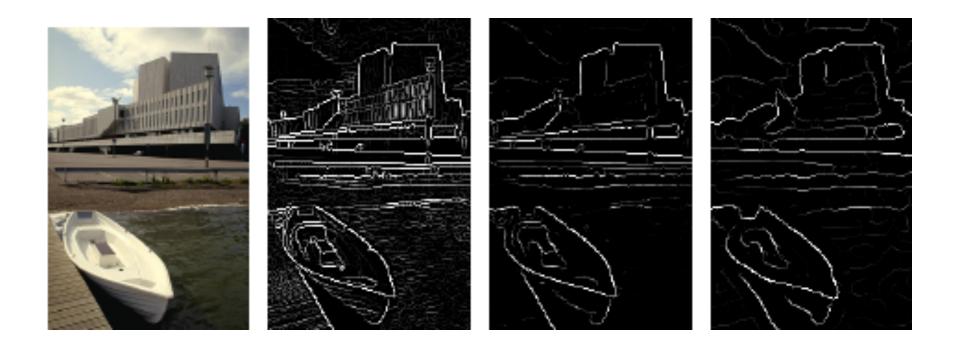
Gaussian Pyramid



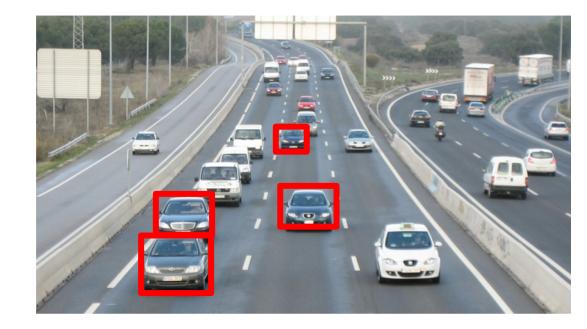
https://en.wikipedia.org/wiki/1/4_%2B_1/16_%2B_1/64_%2B_1/256_%2B_%E2%8B%AF

What are Gaussian Pyramids useful for?

• Operating at multiple scales



Operating at multiple scales



Operating at multiple scales

