CS497P/597P: Computer Vision Instructor: Scott Wehrwein

About Me Scott Wehrwein

scott.wehrwein@wwu.edu

About Me

Research interests:

- Computer vision and graphics
- Computational photography and videography
- Photo and video enhancement
- Augmented reality

Today

1. What is computer vision?

2. Course overview

Today

• Readings

- Szeliski, Chapter 1 (Introduction)

Every image tells a story

- Goal of computer vision: perceive the "story" behind the picture
- Compute properties of the world
 - 3D shape
 - Names of people or objects
 - What happened?

Can the computer match human perception?

- Yes and no (mainly no)
 - computers can be better at "easy" things
 - humans are much better at "hard" things
- But huge progress has been made
 - Accelerating in the last 4 years due to deep learning
 - What is considered "hard" keeps changing

Human perception has its shortcomings

Sinha and Poggio, Nature, 1996

But humans can tell a lot about a scene from a little information...

Source: "80 million tiny images" by Torralba, et al.

xkcd

9/24/2014

Introducing: Flickr PARK or BIRD

flickr 10/20/2014

convolution + pooling layers

fully connected layers

Nx binary classification

Why is computer vision difficult?

Illumination

Scale

Why is computer vision difficult?

Intra-class variation

Background clutter

Motion (Source: S. Lazebnik)

Occlusion

Challenges: local ambiguity

slide credit: Fei-Fei, Fergus & Torralba

But there are lots of cues we can exploit...

NATIONALGEOGRAPHIC COM

O 2003 National Geographic Society, All rights reserved.

The state of Computer Vision and AI: we are really, really far.

The picture above is funny.

But for me it is also one of those examples that make me sad about the outlook for AI and for Computer Vision. What would it take for a computer to understand this image as you or I do? I challenge you to think explicitly of all the pieces of knowledge that have to fall in place for it to make sense. Here is my short attempt:

- · You recognize it is an image of a bunch of people and you understand they are in a hallway
- You recognize that there are 3 mirrors in the scene so some of those people are 'fake' replicas from different viewpoints.
- You recognize Obama from the few pixels that make up his face. It helps that he is in his suit and that he is surrounded by other people with suits.
- You recognize that there's a person standing on a scale, even though the scale occupies only very few
 white pixels that blend with the background. But, you've used the person's pose and knowledge of how
 people interact with objects to figure it out.
- You recognize that Obama has his foot positioned just slightly on top of the scale. Notice the language I'm
 using: It is in terms of the 3D structure of the scene, not the position of the leg in the 2D coordinate system
 of the image.
- You know how physics works: Obama is leaning in on the scale, which applies a force on it. Scale
 measures force that is applied on it, that's how it works => it will over-estimate the weight of the person
 standing on it.
- The person measuring his weight is not aware of Obama doing this. You derive this because you know his
 pose, you understand that the field of view of a person is finite, and you understand that he is not very
 likely to sense the slight push of Obama's foot.
- You understand that people are self-conscious about their weight. You also understand that he is reading
 off the scale measurement, and that shortly the over-estimated weight will confuse him because it will
 probably be much higher than what he expects. In other words, you reason about implications of the
 events that are about to unfold seconds after this photo was taken, and especially about the thoughts and
 how they will develop inside people's heads. You also reason about what pieces of information are
 available to people.
- There are people in the back who find the person's imminent confusion funny. In other words you are
 reasoning about state of mind of people, and their view of the state of mind of another person. That's
 getting frighteningly meta.
- Finally, the fact that the perpetrator here is the president makes it maybe even a little more funnier. You
 understand what actions are more or less likely to be undertaken by different people based on their status
 and identity.

The state of Computer Vision and AI: we are really, really far.

Oct 22, 2012

The picture above is funny.

But for me it is also one of those examples that make me sad about the outlook for AI and for Computer Vision. What would it take for a computer to understand this image as you or I do? I challenge you to think explicitly of all the pieces of knowledge that have to fall in place for it to make sense. Here is my short attempt:

- You recognize it is an image of a bunch of people and you understand they are in a hallway
- You recognize that there are 3 mirrors in the scene so some of those people are "fake" replicas from different viewpoints.
- You recognize Obama from the few pixels that make up his face. It helps that he is in his suit and that he is surrounded by other people with suits.
- You recognize that there's a person standing on a scale, even though the scale occupies only very few
 white pixels that blend with the background. But, you've used the person's pose and knowledge of how
 people interact with objects to figure it out.
- You recognize that Obama has his foot positioned just slightly on top of the scale. Notice the language I'm using: It is in terms of the 3D structure of the scene, not the position of the leg in the 2D coordinate system of the image.
- You know how physics works: Obama is leaning in on the scale, which applies a force on it. Scale
 measures force that is applied on it, that's how it works => it will over-estimate the weight of the person
 standing on it.
- The person measuring his weight is not aware of Obama doing this. You derive this because you know his
 pose, you understand that the field of view of a person is finite, and you understand that he is not very
 likely to sense the slight push of Obama's foot.
- You understand that people are self-conscious about their weight. You also understand that he is reading
 off the scale measurement, and that shortly the over-estimated weight will confuse him because it will
 probably be much higher than what he expects. In other words, you reason about implications of the
 events that are about to unfold seconds after this photo was taken, and especially about the thoughts and
 how they will develop inside people's heads. You also reason about what pieces of information are
 available to people.
- There are people in the back who find the person's imminent confusion funny. In other words you are
 reasoning about state of mind of people, and their view of the state of mind of another person. That's
 getting frighteningly meta.
- Finally, the fact that the perpetrator here is the president makes it maybe even a little more funnier. You
 understand what actions are more or less likely to be undertaken by different people based on their status
 and identity.

Bottom line

- Perception is an inherently ambiguous problem
 - Many different 3D scenes could have given rise to a particular 2D picture

We often need to use prior knowledge about the structure of the world

https://www.youtube.com/watch?v=9MeaaCwBW28

Why study computer vision?

• Billions of images/videos captured per day

- Huge number of useful applications
- The next slides show the current state of the art

• Compute the 3D shape of the world

• Recognize objects and people

Terminator 2, 1991

• "Enhance" images

• Forensics

Source: Nayar and Nishino, "Eyes for Relighting"

Source: Nayar and Nishino, "Eyes for Relighting"

Researchers warn peace sign photos could expose fingerprints

But the likelihood of anyone actually using images to recreate prints is pretty slim.

• Improve photos ("Computational Photography")

Super-resolution (source: 2d3)

Low-light photography (credit: <u>Hasinoff et al., SIGGRAPH ASIA 2016</u>)

Depth of field on cell phone camera (source: <u>Google Research Blog</u>)

Inpainting / image completion (image credit: Hays and Efros)

Optical character recognition (OCR)

• If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs (1990's) http://yann.lecun.com/exdb/lenet/

E Check Entry						00
Data Trada Da Bar Sanata Bar Sana	ta frate grande nuse: 1	. Cotlan	19/100- Void Void	453.00 7	0 1006. 	Patriet
Radi No 128	R C H A N	Orect.Account No 5 □ T R E M I	72344999) T	heck No. 10	Oech Annu 0 Coech Enter	1 53.10 Reint

Automatic check processing

License plate readers http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Sudoku grabber http://sudokugrab.blogspot.com/
Face detection

 Nearly all cameras detect faces in real time – (Why?)

Face Recognition

Face recognition

Who is she?

Vision-based biometrics

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

Source: S. Seitz

Login without a password

Fingerprint scanners on many new smartphones and other devices

Face unlock on Apple iPhone X See also <u>http://www.sensiblevision.com/</u>

Bird Identification

Merlin Bird ID

Special effects: camera tracking

Special effects: shape capture

The Matrix movies, ESC Entertainment, XYZRGB, NRC

Special effects: motion capture

Pirates of the Carribean, Industrial Light and Magic

3D face tracking w/ consumer cameras

Snapchat Lenses

Face2Face system (Thies et al.)

Sports

Sportvision first down line Nice <u>explanation</u> on www.howstuffworks.com

Vision-based interaction (and games)

Assistive technologies

Nintendo Wii has camera-based IR tracking built in. See <u>Lee's work at</u> <u>CMU</u> on clever tricks on using it to create a <u>multi-touch display</u>!

Kinect

RGB, depth, and Pose Estimation

Smart cars

- Mobileye
- Tesla Autopilot
- Safety features in many high-end cars

Self-driving cars

Waymo, Uber, and many others

Robotics

NASA's Mars Curiosity Rover https://en.wikipedia.org/wiki/Curiosity (rover)

Amazon Picking Challenge http://www.robocup2016.org/en/events /amazon-picking-challenge/

Amazon Prime Air

Medical imaging

3D imaging (MRI, CT)

Skin cancer classification with deep learning https://cs.stanford.edu/people/esteva/nature/

Facebook Buys Oculus, Virtual Reality Gaming Startup, For \$2 Billion

+ Comment Now + Follow Comments

Virtual & Augmented Reality

6DoF head tracking

Hand & body tracking

3D scene understanding

3D-360 video capture

Current state of the art

- You just saw many examples of current systems.
 - Many of these are less than 5 years old
- This is a very active research area, and rapidly changing
 - Many new apps in the next 5 years
 - Deep learning powering many modern applications
- Many startups across a dizzying array of areas
 - VR/AR, deep learning, robotics, autonomous vehicles, medical imaging, construction, manufacturing, ...

My Work: Video Segmentation

My Work: Illumination Estimation

My Work: Illumination Estimation

CVPR Attendance

xkcd

9/24/2014

Introducing: Flickr PARK or BIRD

flickr 10/20/2014

convolution + pooling layers

fully connected layers

Nx binary classification

Why is computer vision difficult?

Illumination

Scale

Why is computer vision difficult?

Intra-class variation

Background clutter

Motion (Source: S. Lazebnik)

Occlusion

Challenges: local ambiguity

slide credit: Fei-Fei, Fergus & Torralba
But there are lots of cues we can exploit...

NATIONALGEOGRAPHIC COM

O 2003 National Geographic Society, All rights reserved.

Bottom line

- Perception is an inherently ambiguous problem
 - Many different 3D scenes could have given rise to a particular 2D picture

We often need to use prior knowledge about the structure of the world

The state of Computer Vision and AI: we are really, really far.

The picture above is funny.

But for me it is also one of those examples that make me sad about the outlook for AI and for Computer Vision. What would it take for a computer to understand this image as you or I do? I challenge you to think explicitly of all the pieces of knowledge that have to fall in place for it to make sense. Here is my short attempt:

- · You recognize it is an image of a bunch of people and you understand they are in a hallway
- You recognize that there are 3 mirrors in the scene so some of those people are 'fake' replicas from different viewpoints.
- You recognize Obama from the few pixels that make up his face. It helps that he is in his suit and that he is surrounded by other people with suits.
- You recognize that there's a person standing on a scale, even though the scale occupies only very few
 white pixels that blend with the background. But, you've used the person's pose and knowledge of how
 people interact with objects to figure it out.
- You recognize that Obama has his foot positioned just slightly on top of the scale. Notice the language I'm
 using: It is in terms of the 3D structure of the scene, not the position of the leg in the 2D coordinate system
 of the image.
- You know how physics works: Obama is leaning in on the scale, which applies a force on it. Scale
 measures force that is applied on it, that's how it works => it will over-estimate the weight of the person
 standing on it.
- The person measuring his weight is not aware of Obama doing this. You derive this because you know his
 pose, you understand that the field of view of a person is finite, and you understand that he is not very
 likely to sense the slight push of Obama's foot.
- You understand that people are self-conscious about their weight. You also understand that he is reading
 off the scale measurement, and that shortly the over-estimated weight will confuse him because it will
 probably be much higher than what he expects. In other words, you reason about implications of the
 events that are about to unfold seconds after this photo was taken, and especially about the thoughts and
 how they will develop inside people's heads. You also reason about what pieces of information are
 available to people.
- There are people in the back who find the person's imminent confusion funny. In other words you are
 reasoning about state of mind of people, and their view of the state of mind of another person. That's
 getting frighteningly meta.
- Finally, the fact that the perpetrator here is the president makes it maybe even a little more funnier. You
 understand what actions are more or less likely to be undertaken by different people based on their status
 and identity.

The state of Computer Vision and AI: we are really, really far.

Oct 22, 2012

The picture above is funny.

But for me it is also one of those examples that make me sad about the outlook for AI and for Computer Vision. What would it take for a computer to understand this image as you or I do? I challenge you to think explicitly of all the pieces of knowledge that have to fall in place for it to make sense. Here is my short attempt:

- You recognize it is an image of a bunch of people and you understand they are in a hallway
- You recognize that there are 3 mirrors in the scene so some of those people are "fake" replicas from different viewpoints.
- You recognize Obama from the few pixels that make up his face. It helps that he is in his suit and that he is surrounded by other people with suits.
- You recognize that there's a person standing on a scale, even though the scale occupies only very few
 white pixels that blend with the background. But, you've used the person's pose and knowledge of how
 people interact with objects to figure it out.
- You recognize that Obama has his foot positioned just slightly on top of the scale. Notice the language I'm using: It is in terms of the 3D structure of the scene, not the position of the leg in the 2D coordinate system of the image.
- You know how physics works: Obama is leaning in on the scale, which applies a force on it. Scale
 measures force that is applied on it, that's how it works => it will over-estimate the weight of the person
 standing on it.
- The person measuring his weight is not aware of Obama doing this. You derive this because you know his
 pose, you understand that the field of view of a person is finite, and you understand that he is not very
 likely to sense the slight push of Obama's foot.
- You understand that people are self-conscious about their weight. You also understand that he is reading
 off the scale measurement, and that shortly the over-estimated weight will confuse him because it will
 probably be much higher than what he expects. In other words, you reason about implications of the
 events that are about to unfold seconds after this photo was taken, and especially about the thoughts and
 how they will develop inside people's heads. You also reason about what pieces of information are
 available to people.
- There are people in the back who find the person's imminent confusion funny. In other words you are
 reasoning about state of mind of people, and their view of the state of mind of another person. That's
 getting frighteningly meta.
- Finally, the fact that the perpetrator here is the president makes it maybe even a little more funnier. You
 understand what actions are more or less likely to be undertaken by different people based on their status
 and identity.

Course Logistics

Course webpage / Syllabus:

Richard Sorlisi

<u>https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci497_19w/</u> (link is also available on Syllabus page of Canvas)

Textbook:

Rick Szeliski, Computer Vision: Algorithms and Applications

online at: http://szeliski.org/Book/

Course Logistics

Announcements/grades via Canvas

Q&A via Piazza – you'll get an email invite to join

Assessment (tentative)

- 5(?) programming projects, all in Python
 - Distributed and submitted via Github
 - Some will be done in pairs, some individually
- Midterm and final exams
- Possible written homeworks
- Possible quick quizzes at the beginning of class