
CSCI 497P / 597P Winter 2019

HW2

Due: Thursday, March 14, 2019 at 9:59pm

This homework is optional; if you submit it, your grade (once again, graded on a faithful-
effort basis) will be averaged with your HW1 grade. Otherwise, your homework grade
will depend only on your HW1 grade. You are free to collaborate however you see fit, but
if you are submitting the homework you must write up your solutions yourself.

1 Projective and Two-View Geometry

1. For each of the following components of a camera projection matrix, describe its
entries and how they relate to the different camera parameters. Also specify the
coordinate system of the input and output of the transformation.

(a) Extrinsics matrix

(b) Projection matrix

(c) Intrinsics matrix

2. The funamental matrix is not full rank.

(a) Give its rank, explain the geometric significance of the rank.

(b) Explain the geometric interpretation of its null space. As a reminder, the null
space of a matrix T is the set of vectors x such that Tx = 0.

3. In this problem, we will unsuccessfully attempt to break math by finding the inter-
section point of parallel lines.

(a) Given the homogeneous coordinates of a line ` = [a, b, c]T , derive an expression
for the slope of the line. You may assume the slope is not undefined.

(b) Give a criterion for determining whether two homoegeneous lines `1 = [a1, b1, c1]
T

and `2 = [a2, b2, c2]
T are parallel. Again, assume their slopes as derived in part

(a) are not undefined.

(c) It turns out that in projective space, the intersection point of two parallel lines
is well-defined. Calculate the intersection of `1 and `2 above.

(d) Using the intersection point’s coordinates and the parallel criterion from part
(b), what can you say about the homogeneous coordinates of the intersection
of two parallel lines?

(e) A homoegeneous point with the above property is called a ”point at infinity”.
Describe the meaning of a ”point at infinity” using the more intuitive 3D inter-
pretation of 2D projective space.

4. You are given an uncalibrated stereo pair. Is it possible to generate a 3D model of
the scene? If so, explain how, and any limitations of the approach. If not, explain
why it’s impossible.

2 Photometric Stereo

5. For calibrated photometric stereo to work, how many independent light directions
are needed at a minimum? Why?

6. Suppose we’re solving a photometric stereo system I = LTN . If n is the number of
images, p, is the number of pixels in an image, I is n× p, L is 3× n, and N is 3× p.
If light sources are not directional (e.g., lights are point sources close to the scene
being imaged), why does the matrix equation no longer hold?

3 Recognition and Machine Learning

7. As we saw in Project 5, there is no ReLU applied after the final layer in the AlexNet
architecture, meaning that the raw scores that get fed into softmax/cross-entropy
can take negative values. Given the probabilistic interpretation of the softmax-
normalized score vectors, why might applying ReLU be a bad idea?

8. You are training a binary linear classifier on a 3-dimensional feature space. The loss
function to be optimized is an SVM loss with L2 regularization:

Li(xi;w, b) = max(0, 1− yi(wTx+ b)) +
λ

2
||w||22

where x is a 3-dimensional data point, w is a 3-vector of parameters, b is a scalar bias
parameter, and λ is a hyperparameter (i.e., it is fixed during training). Your classifier
is a Python class that has members to store its parameters (w, b), the intermediate
values of the computation, and the gradients of the loss wrt each of the intermediate
values and parameters. The forward pass of the classifier is written as follows:

def forward(x, y):
""" Compute the loss for datapoint x with true label
y (-1 or 1) """
self.reg = 0.5 * self.lambda * np.dot(self.w, self.w)
self.p = np.dot(self.w, x) + b
self.r = 1 - y * self.p
self.s = max(0, self.r)
self.loss = self.s + self.reg

(a) Write the backward pass to compute of the loss with respect to each intermedi-
ate value and parameter. Notice that ∂L

∂w is a vector of partial derivatives, one
for each element of the w parameter vector.

• Hint 1: you may find it helpful to write the dot products in the forward
pass in scalar notation.

• Hint 2: the gradient of the loss with respect to w depends on both the
SVM loss term and the regularization term; because these two contribu-
tions summed in the loss function, the gradient wrt w is also a sum of the
gradients from each of these terms. In math terms, because

L = s+ reg

the gradient of L wrt w is

∂L

∂w
=
∂s

∂w
+
∂reg

∂w

backward(x):
""" Compute the backwards pass. Each variable’s
name refers to the gradient of self.loss with
respect to the named variable. For example, dp
is dLoss/dp. Assume that forward(x) has been run,
so the forward pass has populated self.reg, self.p,
self.r, self.s, and self.loss. """

self.ds =

self.dr =

self.dp =

self.dreg =

self.db =

self.dw =

(b) Implement a training loop in the following method; assume this is a method of
your classifier, so you can access the above variables and methods using self.
Your training loop should iterate over the entire dataset once and update its
parameters using SGD (i.e., batch size 1). You can assume X has been shuffled
so there’s no need to sample points randomly.

def train(X, Y, lr):
""" Train this classifier using vanilla SGD.
X is n-by-3; each row is a data point
Y is n-by-1; each entry is -1 or 1, the correct

class label for the corresponding point in X.
lr is hte gradient descent step size (learning rate)
"""

9. What characteristic must an activation function satisfy in order to serve its purpose?

10. Why is a sigmoid a bad choice for activation function?

11. Consider the following architecture, which is very similar to AlexNet you used in
Project 5. For brevity, we’ve excluded the ReLU operations, because they don’t
change the dimensions or require any parameters.

nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), # conv1
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2), # conv2
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1), # conv3
nn.Conv2d(384, 256, kernel_size=3, padding=1), # conv4
nn.ReLU(inplace=INPLACE),
fnn.Conv2d(256, 256, kernel_size=3, padding=1), # conv5
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Linear(256 * 6 * 6, 4096), # fc1
nn.Linear(4096, 4096), # fc2
nn.Linear(4096, 1000) # fc3

(a) The network’s input dimenksions are 224x224. Calculate the size of the feature
map after each layer in the network above.

i. conv1

ii. conv2

iii. conv3

iv. conv4

v. conv5

vi. fc1

vii. fc2

viii. fc3

(b) Now, calculate the number of parameters are required for each layer.

i. conv1

ii. conv2

iii. conv3

iv. conv4

v. conv5

vi. fc1

vii. fc2

viii. fc3

(c) To train the network on a GPU, we need to store arrays containing each fea-
ture map and each set of parameters in GPU RAM. Further, it has to store the
gradient of the loss wrt each set of parameters. Assuming feature maps and
parameters all have type float32 and thus require 4 bytes per element to store,
how much GPU RAM would be necessary to train AlexNet? Note that we’re
ignoring any overhead for each array, space required to store the input image,
and a variety of other details.

(d) In practice, we train by pushing batches of images through the network at once.
If my GPU has 6GB of RAM, what’s the largest batch size I could use?

	Projective and Two-View Geometry
	Photometric Stereo
	Recognition and Machine Learning

