

Lecture 29 - Splines: Hermite Splines Bézier Curves

Announcements

- Milestone 1 due tomorrow night
- Spline lab starting tomorrow or Wednesday.
 - Bring a laptop if you can!
 - Javascript only, no Julia needed
- Grad presentation lineup is on the Schedule table.
 - There will be a survey for attendees, worth participation points. Please plan to be there!
 - Friday 12/6 is optional, come Ask Me Anything

Goals (for today and tomorrow combined)

- Be able to derive the control matrix for Hermite Splines and Bezier curves.
- Understand why it's called the basis matrix
 - Understand some geometric properties of Bézier splines:
 - Evaluation by linear interpolation
 - Subdivision and drawing using de Casteljau's algorithm
 - Know how to join multiple (e.g., Bezier) spline segments together
 - Know the definition of parametric and geometric continuity.
 - See a few other examples of splines, including B-splines and NURBS

Hermite Splines: Demo

https://www.desmos.com/calculator/gomvxqce4a

Hey Scott, switch to the notes

Derive Hermite Spline Matrix

Bezier Curves: Demo

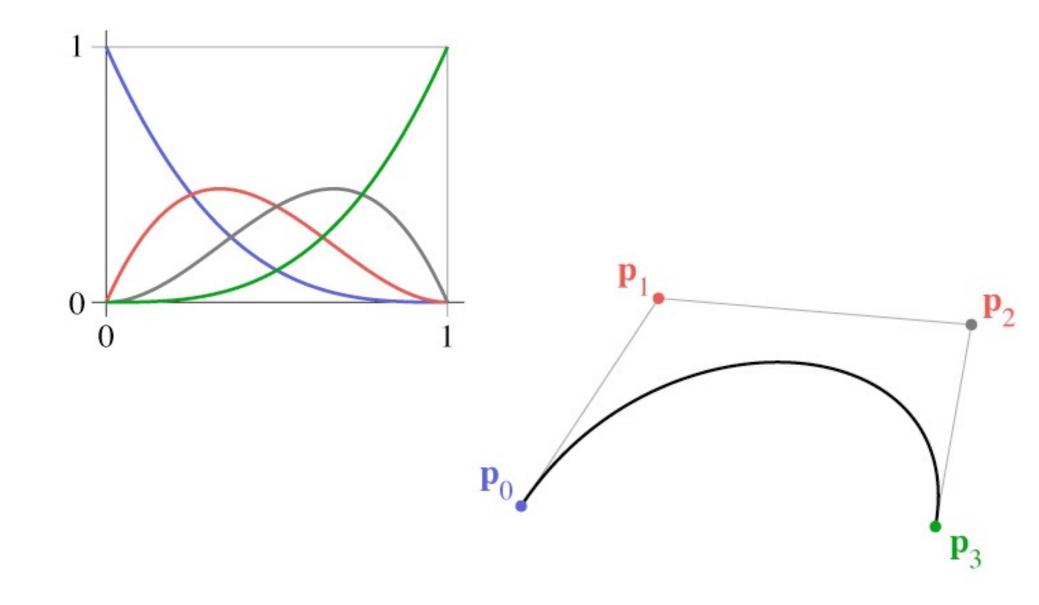
 https://celloexpressions.com/geometry/ bezier-curves-splines/560.html

Derive Bézier Spline Matrix

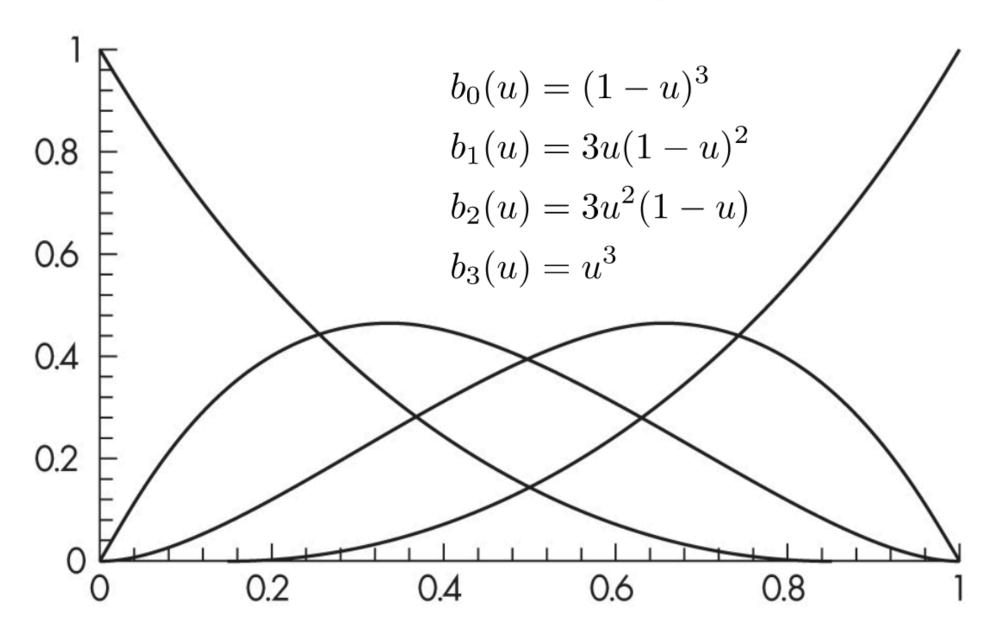
Why is it called a "Basis Matrix"?

- We have: $f(u) = \mathbf{u}^T B \mathbf{p}$
- For computational purposes, we'll want to precompute Bp.
 - This is the vector of a_i 's that weights each power of u
- How would we interpret $\mathbf{u}^{\mathrm{T}}B$?
 - A polynomial that specifies the weight on each control point.

Blending Functions



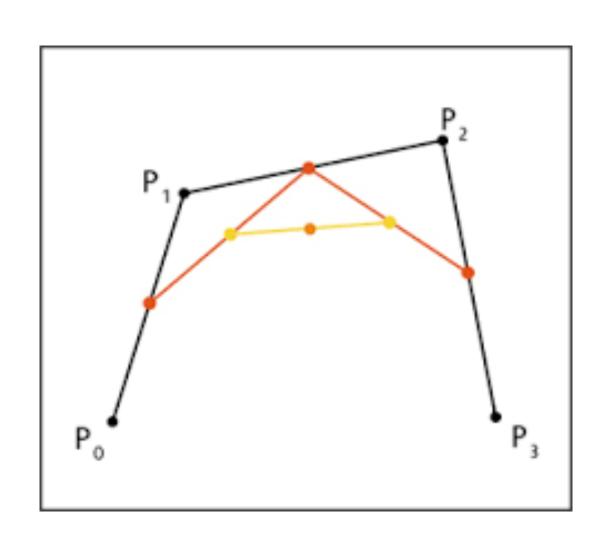
Cubic Bezier blending functions



Coolest / most satisfying animation of the quarter

https://www.jasondavies.com/animated-bezier/

Bezier Curves: Geometry



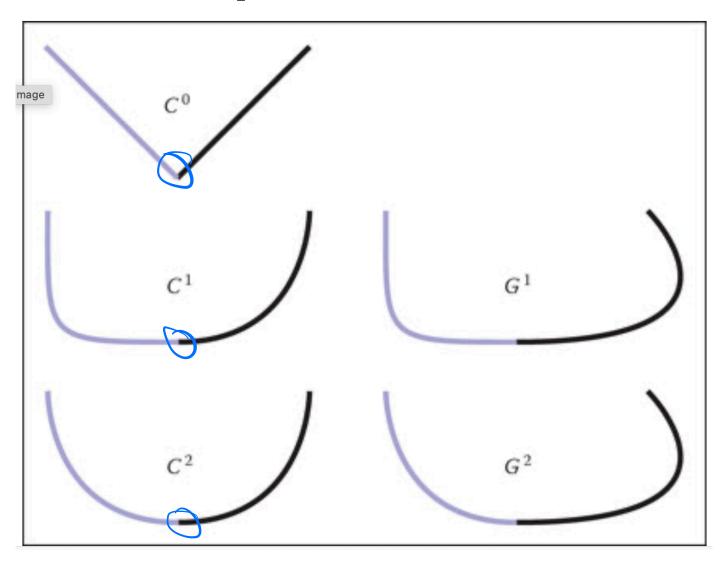
Coolest / most satisfying animation of the quarter

https://www.jasondavies.com/animated-bezier/

Joining Segments

 http://math.hws.edu/eck/cs424/notes2013/ canvas/bezier.html

Curve Properties: Continuity

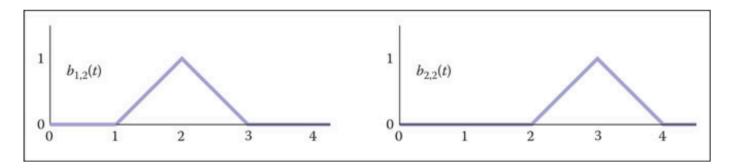


 $C^1: \mathbf{f}'_1(1) = \mathbf{f}'_2(0)$

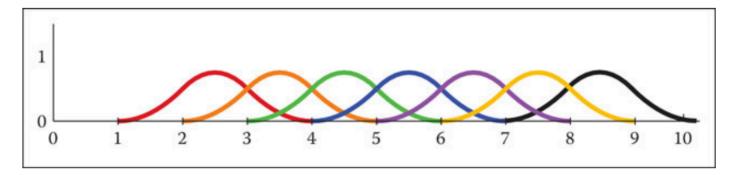
 $G^1: \mathbf{f}'_1(1) = k\mathbf{f}'_2(0)$

B-Splines

- Offer arbitrary continuity
- The basis polynomials are splines
 themselves!
 k: polynomial order of "bump"

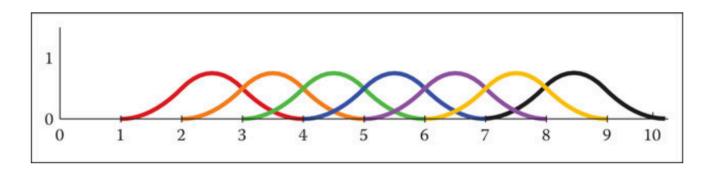


$$k = 1$$



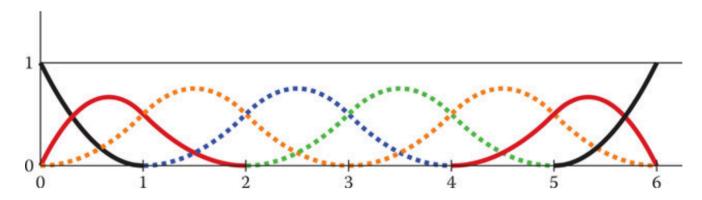
$$k = 3$$

Uniform B-Splines

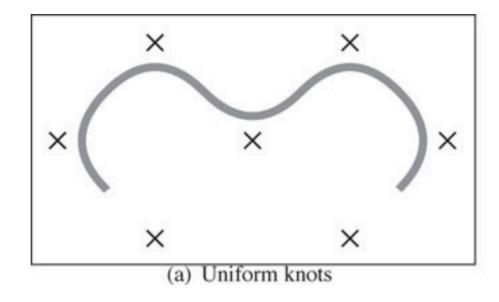


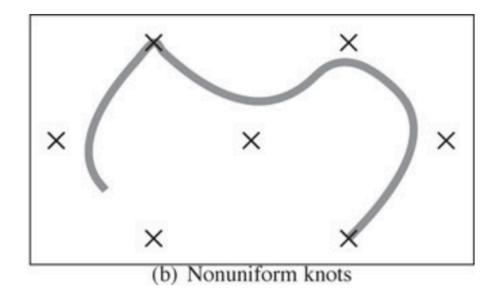
uniform B-spline: "bumps" (knots) evenly spaced

Non-Uniform B-Splines



non-uniform B-spline: "bumps" (knots) are not evenly spaced





Non-Uniform Rational B-Splines: NURBS

 B-spline bases are polynomials - can't represent conic sections e.g., a circle:

•
$$x^2 + y^2 = 0$$

- Rational B-splines use a ratio of two polynomials.
 - Numerator and denominator are both B-splines

Curves are great, but.

https://youtu.be/AcFwH161XtM?t=68

https://youtu.be/Zkx1aKv2z8o?t=1080