
CSCI 480 - Spline Notes  
We've talked about how to model (mathematically) and render (i.e., draw) straight lines. We now turn our 
attention to how we can model and render curved lines. Before we get to curved lines, however, we're going to 
build some mathematical machinery that uses straight lines, but will generalize nicely to curved lines later.

One popular tool for modeling curves is called a spline; supposedly, this term comes from shipbuilding tools 
used back in the day to create curved surfaces such as the hulls of ships. A number of pegs would be set in 
position, then a thin strip of metal would be bent around the pegs to create a smoothly curving line. Here, the 
curve's overall trajectory is controlled by the placement of the pegs, while the "smoothness" of the curve is 
determined by the physical properties of the metal. You could imagine stiffer metal creating a curve with 
different properties than a more flexible or thinner metal.

We will use analogous mathematical tools to model these curves in computer graphics. In particular, we would 
like to give a modeler control over the curve by allowing them to specify control points. We will then decide on 
some smooth mathematical form that determines the shape of the curve as it travels among control points; in 
our case, we're going to use low-degree polynomials to ensure that the path is smooth.

Not all desired curves can be modeled with low-degree polynomials; but higher-degree polynomials are quite 
twitchy to work with, and may not end up particularly smooth. For this reason, we will model more complex 
curves by stringing together segments that are made of low-degree polynomials.

Preliminaries: Linear Interpolation  

We've seen several representations of straight lines so far, and a few of them will be useful to think about here, 
so let's review. For now, let's assume that we have two points  and  that define our 
line segment.

Implicit equations for a line include slope-intercept form:

 

and 

 

Meanwhile, we have the parametric form

 

Let's build some intuition by deriving some relationships among these, using our specific points  
and .

In the case where we want to talk about the line between two points, we can write a parametric form that 
begins at   and travels along the direction vector between the two points :

 

Parametric to Linear Interpolation  



From here, we can move towards the standard way that we write linear interpolation:

 

This form makes it clear that this function is  at ,  at , and a linear combination of the two 
points at values of  in between. In fact, for situations like this where we really just want to talk about the 
segment between the two points, we have a convention to use the parameter variable  instead of  - this (by 
convention only) signifies that we only expect to work with values of  within the range 0 to 1:

 

Degree-1 Polynomials: Piecewise Linear "Curves"  

To model curves that are more complicated than lines, we could use increasingly complicated mathematical 
functions. Take the example of polynomials: a line is a degree-1 polynomial, and it is flexible enough only to 
model a straight line. A degree-2 polynomial can model any parabola (including a straight line if the  
coefficient is 0), and the curves only get more expressive as the polynomial degree increases. However, they 
also get more unstable and unweidly; a degree-100 polynomial is extremely hard to work with and its shape is 
extremely sensitive to its coefficients.

An easier way to model complicated curves is to use piecewise polynomial segments. In the case of degree-1 
polynomials, this looks like a linestring: a sequence of points, where each consecutive pair is connected by a 
line segment. If we want well-behaved curved segments that are more flexible, we can increase the polynomial 
degree (e.g., to 2 or 3); chaining many of these together gives us a lot of expressiveness without the fiddliness 
of high-degree polynomials.

Representations: Control Points vs Polynomial Coefficients  

If you were looking to model a linestring, I'd argue that the above linear interpolation representation is one of 
the most intuitive ways to do it. You supply a sequence of points, and each consecutive pair has a line segment 
running between them. Using the above interpolation equation, the coordinates of any point along each line 
segment can be computed by an appropriate choice of  between 0 and 1.

If you were rendering that linestring, this wouldn't be a bad representation either. However, it's not obvious 
how we would change this equation to interpolate a degree-1 polynomial into one that interpolates a degree-2 
polynomial (or higher). So we're going to add what seems like a lot of unnecessary structure to the straight line 
case, but the payoff is that we can straightforwardly generalize to other types of polynomials later.

Let's write down a parametric equation for a line in a way that makes it glarily obvious that it's a degree-1 
polynomial in :

 

Let me sell you on this polynomial representation first. Notice that the above equation is equivalent to the 
following:

 



This means that if we know the 's, then computing the coordinates of the point at a chosen  reduces to a dot 
product. That's nice! The polynomial coefficients give a nice and convenient form for evaluating the points on 
the line, and that's a handy thing for actually drawing the line. 

However, for modeling purposes, the 's are much more convenient to work with. You might notice that, since 
 is 1, the polynomial form reduces to , which is a change of variable names away from our 

original parametric ray, and based on that it's pretty easy to figure out how the polynomial coefficients (  
relate to the control points :  is equal to , while  is .  So if you were asked to specify the 
polynomial coefficients, you'd be giving two different kinds of things - a point, and the vector from that point to 
the other one; that's not as user-friendly as just giving the two points themselves. As you'll see, this difference 
in user-friendliness gets much more pronounced as we move away from lines.

So to summarize, polynomial coefficients (the 's') are convenient for rendering, while control points (the 
's) are convenient for modeling. The next thing we need is a general strategy for converting between the two.

Here's a demo that shows this in 1D for the degree-1 (linear) case. Notice the red dot isn't specifying where the 
line ends - the red dot is specifying the distance traveled from the green dot. 

While this seems like a minor inconvenience, it gets much worse when the polynomial degree gets higher. 
Here's another demo that does the analogous thing for a cubic polymial. If you have a curve shape in mind, it's 
quite challenging to achieve it just by tweaking the coefficients. 

From Control Points to Polynomial Coefficients  

Suppose a modeler gives us the 's, and we want to calculate the 's so we can plug it into our dot-product 
evaluator for speedy rendering.

What I know about the control points for a line segment is that they appear at the beginning and end of the line 
segment. In other words,

 

Plugging these values of  into the dot product equation above, we get:

 

I can do that with  as well:

 

https://www.desmos.com/calculator/kdolwovvol
https://www.desmos.com/calculator/lrqdlc2o2c


That gives me the control point if I know the coefficients; usually, I'm given the control points and I want the 
coefficients, so the useful thing would be

 

We've now arrived at what we knew already. But let's just add a tiny little bit more seemingly unnecessary 
structure to this. Notice that I plugged two values of  in above to generate two  vectors. If I stack these into a 
matrix, I can compute both control points at once:

 

The extra-nice thing about putting this into a matrix is that if we want to go the other way (get polynomial 
coefficients from control points), we can do this by inverting the matrix! We'll write the above in matrix notation 
as:

 

so that

 

The matrix  is important enough to have a name - it's called the control matrix; its inverse is called the basis 
matrix, and we'll call it B:

 

If I did the matrix inversion and calculated this out, I would get

 

which is exactly what we would expect based on the non-matrix version above, and in fact based on the ray 
form of the line outline all the way back in the Preliminaries section.

Evaluating Points on the Curve  

Now that we have the polynomial coefficients , we can evaluate any point on the curve with the same dot 
product as we saw above:

 

where . We can also put these together to get an expression that goes all the way from control 



where . We can also put these together to get an expression that goes all the way from control 
points to any point on the curve:

 

Degree-2 Polynomials: Quadratics  

This was all a lot of machinery in order to draw line segments, but now it's a little easier to see how we could 
generalize it to higher-degree polynomials. Let's model a quadratic. Our first design decision is: what should I 
use as control points? For a line segment, the endpoints are a natural choice. For a parabola, we could make 
various choices; for now, let's give the user control over the start, middle, and end of the curve. In other words, 

 is the point on the parabolic segment at ,  is the point at , and  is the point at . 
Let's write this out just like we did above:

 

This yields the control matrix :

 

whose inverse is the basis matrix :

 

So just as above, if we have the control points  and a value of , the polynomial coefficients are , and 
the position of the point on the curve at  is directly computable as .
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