
Computer Graphics
Lecture 25

Rasterizing Lines

Logistics: Final Project
• Project proposals due tonight

• Ideally you will have done enough investigation to
conclude that your plan is achievable.

• Err on the side of ambition

• Slip days can't be used on any final project
deadline

• "...although the intermediate deadlines have only small point values
associated with them on Canvas, your Final Project Report grade will
take the quality, timeliness, etc. of intermediate deliverables into
consideration."

Logistics: Exam
• Exam out today

• Do not discuss with anyone; do not use resources other
than those linked from the course webpage

Goals
• Know how to draw lines using point sampling, and

why this causes variable apparent line widths.

• Know how to draw lines with slope between 0 and
1 using the midpoint algorithm.

• Know how to draw lines with any slope by
adjusting the inputs to the midpoint algorithm.

• Know how to interpolate arbitrary quantities
across a line drawn using the midpoint algorithm.

Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to fragments

blending, compositing, shading

user sees this

Remember Wireframe?

M = Mvp Mproj Mview Mmodel
for each line segment ai, bi
 p = M ai
 q = M bi
 draw_line(p, q)

Remember Wireframe?

M = Mvp Mproj Mview Mmodel
for each line segment ai, bi
 p = M ai
 q = M bi
 draw_line(p, q) How do we do this?

Remember Wireframe?

M = Mvp Mproj Mview Mmodel
for each line segment ai, bi
 p = M ai
 q = M bi
 draw_line(p, q) How do we do this?

Line Drawing

M = Mvp Mproj Mview Mmodel
for each line segment ai, bi
 p = M ai
 q = M bi
 draw_line(p, q) How do we do this?

This is a rasterization problem:
given a primitive (line segment),
generate fragments (aspiring pixels)

p

q

Problem 1: Artisanal Line Drawing  
Which pixels do you think should be filled in?

p

q

Compare your line to a neighboring
group's line. Did you pick the same pixels?

Problem 1: Artisanal Line Drawing  
Which pixels do you think should be filled in?

tastes
soooooo

sooo
dotards

Exercise 2:
Algorithm to draw a line?

p

q
B

ftp.t

Exercise 2:
Algorithm to draw a line?

p

q

What makes a line good?
uniform width intensity

no 2 y's perx

© 2014 Steve Marschner •

Rasterizing lines - possible definition

• Define line as a
rectangle

• Specify by two
endpoints

• Ideal image: black
inside, white outside

12

© 2014 Steve Marschner •

Rasterizing lines - possible definition

• Define line as a
rectangle

• Specify by two
endpoints

• Ideal image: black
inside, white outside

12

© 2014 Steve Marschner •

Point sampling

• Approximate
rectangle by drawing
all pixels whose
centers fall within the
line

• Problem: sometimes
turns on adjacent
pixels

13

© 2014 Steve Marschner •

Point sampling

• Approximate
rectangle by drawing
all pixels whose
centers fall within the
line

• Problem: sometimes
turns on adjacent
pixels

13

© 2014 Steve Marschner •

Point sampling
in action

14

© 2014 Steve Marschner •

Bresenham lines (midpoint alg.)

• Point sampling unit
width rectangle leads
to uneven line width

• Define line width
parallel to pixel grid

• That is, turn on the
single nearest pixel in
each column

• Note that 45º lines
are now thinner

15

© 2014 Steve Marschner •

Bresenham lines (midpoint alg.)

• Point sampling unit
width rectangle leads
to uneven line width

• Define line width
parallel to pixel grid

• That is, turn on the
single nearest pixel in
each column

• Note that 45º lines
are now thinner

15

© 2014 Steve Marschner •

Bresenham lines (midpoint alg.)

• Point sampling unit
width rectangle leads
to uneven line width

• Define line width
parallel to pixel grid

• That is, turn on the
single nearest pixel in
each column

• Note that 45º lines
are now thinner

15

© 2014 Steve Marschner •

Midpoint algorithm
in action

16

© 2014 Steve Marschner •

Point sampling
in action

17

Notes:
Midpoint Algorithm

© 2014 Steve Marschner •

Midpoint Algorithm

• line equation:
y = b + m x

• Simple algorithm:
evaluate line equation
per column

• W.l.o.g. x0 < x1;
0 ≤ m ≤ 1

y = 1.91 + 0.37 x

19

© 2014 Steve Marschner •

Midpoint Algorithm

• line equation:
y = b + m x

• Simple algorithm:
evaluate line equation
per column

• W.l.o.g. x0 < x1;
0 ≤ m ≤ 1

y = 1.91 + 0.37 x

19

Algorithm:

© 2014 Steve Marschner •

Midpoint Algorithm

• line equation:
y = b + m x

• Simple algorithm:
evaluate line equation
per column

• W.l.o.g. x0 < x1;
0 ≤ m ≤ 1

// compute m, b
for x = ceil(x0) to floor(x1)
 y = b + m*x
 // Ex: what goes here?

y = 1.91 + 0.37 x

20

Algorithm:

© 2014 Steve Marschner •

Algorithms for drawing lines

• line equation:
y = b + m x

• Simple algorithm:
evaluate line equation
per column

• W.l.o.g. x0 < x1;
0 ≤ m ≤ 1

// compute m, b
for x = ceil(x0) to floor(x1)
 y = b + m*x
 draw(x, round(y))

y = 1.91 + 0.37 x

21

Algorithm:

© 2014 Steve Marschner •

Optimizing Line Drawing
Can we take stuff out of
the inner loop?
Exercise: optimize this

22

function fast_line(p1, p2):
// compute m, b

for x = ceil(x0) to floor(x1)

 draw(x, round(y))

function slow_line(p1, p2):
// compute m, b
for x = ceil(x0) to floor(x1)
 y = b + m*x
 draw(x, round(y))

© 2014 Steve Marschner •

Optimizing Line Drawing Even More

• Rounding is slow too
• At each pixel the only

options are E and NE
• Track distance to line:

– d = m(x + 1) + b – y
– d > 0.5 decides

between E and NE

23

© 2014 Steve Marschner •

• d = m(x + 1) + b – y
• Only need to update

d for integer steps in
x and y

• Do that with addition
• Known as “DDA”

(digital differential
analyzer)

Optimizing Line Drawing Even More

24

© 2014 Steve Marschner •

Linear interpolation

• We often attach attributes to vertices
– e.g. computed diffuse color of a hair being drawn using lines
– want color to vary smoothly along a chain of line segments

25

© 2014 Steve Marschner •

Linear interpolation

• We often attach attributes to vertices
– e.g. computed diffuse color of a hair being drawn using lines
– want color to vary smoothly along a chain of line segments

25

© 2014 Steve Marschner •

Linear interpolation

• We often attach attributes to vertices
– e.g. computed diffuse color of a hair being drawn using lines
– want color to vary smoothly along a chain of line segments

25

• Same machinery as
we used for y works
for other values!

© 2014 Steve Marschner •

Rasterizing triangles

• Input:
– three 2D points (the triangle’s vertices in pixel space)

• (x0, y0); (x1, y1); (x2, y2)
– parameter values at each vertex

• q00, …, q0n; q10, …, q1n; q20, …, q2n

• Output: a list of fragments, each with
– the integer pixel coordinates (x, y)
– interpolated parameter values q0, …, qn

26

© 2014 Steve Marschner •

Rasterizing triangles

• Summary
1 evaluation of linear

functions on pixel
grid

2 functions defined by
parameter values
at vertices

3 using extra
parameters
to determine
fragment set

27

© 2014 Steve Marschner •

Incremental linear evaluation

• A linear (affine, really) function on the plane is:

• Linear functions are efficient to evaluate on a grid:

28

© 2014 Steve Marschner •

Pixel-walk (Pineda) rasterization

• Conservatively visit a
superset of the pixels
you want

• Interpolate linear
functions
– barycentric coords

(determines when to
emit a fragment)

– colors
– normals
– whatever else!

29

