e

Computer Graphics

Lecture 24
OpenGL Lab: Data Plumbing

Announcements

e HW2 grades are out

e FP group formation due today; proposal due Friday

* |f you still don't have a group, hang around after class

e Midterm out Friday, due Tuesday at the start of class.

e Tuesday is a "lab day" again, bring a laptop if you can
(we'll use Julia on Monday)

e A2 artifacts are posted and voting is open! Vote by
Monday night and we'll showcase the winners on
Tuesday.

Graphics Pipeline: Overview

you are here wmp

3D transformations; shading =s§» VERTEX PROCESSING

conversion of primitives to pixels

blending, compositing, shading == FRAGMEN

ROCESSING

user sees this ==

OpenGL: Your job, conceptually

(send geometry)
e [Send buffers full of data to GPU up front.

e [Tell GL how to interpret them (triangles, ...)

(write vertex shader]

* GL executes custom-written‘vertex shader program |on each

vertex (to determine its location in clip space) =normalized device
coordinates

* GL rasterizes primitives into pixel-shaped fragments

(write fragment shader)

* GL executes custom-written|fragment shader program‘on
each fragment to determine its color.

e GL writes fragment colors to framebuffer pixels; neat things
appear on your screen.

Terminology, so far

e Clipping
e Rasterization
e |nterpolation

* Fragment

e Shader

WebGL: Your Jobs

e Send geometry
e \Write a vertex shader

e Write a fragment shader

WebGL: Your Jobs

 Send geometry by calling gl functions

e \Write a vertex shader

e Write a fragment shader

WebGL: Your Jobs

 Send geometry by calling gl functions

e Write a vertex shader in GLSL, the GL

« Write a fragment shader S''@derlanguage

WebGL Data Plumbing: Overview

application

triangles l lll attributes

vertex program

uniform
variables

rasterizer

l l varying parameters

/ l l varying parameters

fragment program

depth l l color

framebuffer See also: today's
lecture notes

WebGL: Hello, Triangle!

 Send geometry by calling gl functions

e Write a vertex shader in GLSL, the GL

« Write a fragment shader S''@derlanguage

WebGL: Hello, Triangle!

 Send geometry by calling gl functions

e Write a vertex shader in GLSL, the GL

« Write a fragment shader S''@derlanguage

WebGL: Hello, Triangle!

 Send geometry by calling gl functions

e Write a vertex shader in GLSL, the GL

« Write a fragment shader S''@derlanguage

A first pass at the lab code...

WebGL: Hello, Triangle!

 Send geometry by calling gl functions

e Write a vertex shader n GLSL. the GL
« Write a fragment shader S''@derlanguage

A first pass at the lab code...

okay so we saw some unfamiliar words in there:

buffer
attribute

WebGL Data Plumbing

application

triangles l ll
vertex program
‘ /! [

See also: today's
lecture notes

WebGL Data Plumbing

sent in vertex buffers
application

triangles l ll

vertex program

/! [

See also: today's
lecture notes

WebGL Data Plumbing

sent in an index buffer

triangles | | |

/!

sent in vertex buffers
application

attributes

vertex program

See also: today's
lecture notes

WebGL: Hello, Triangle!

 Send geometry by calling gl functions

e Write a vertex shader in GLSL, the GL

« Write a fragment shader S''@derlanguage

WebGL: Hello, Triangle!

 Send geometry by calling gl functions

e Write a vertex shader in GLSL, the GL

« Write a fragment shader S''@derlanguage

WebGL: Hello, Triangle!

 Send geometry by calling gl functions

e Write a vertex shader in GLSL, the GL

« Write a fragment shader S''@derlanguage

A first look at the shader code...

Shader Responsibilities

The vertex shader's job is to:

» assign avalue to gl _Position,
which specifies the vertex's position
» assign values to any varying parameters needed later

The fragment shader's job is to:

» assign a value to gl_FragColorf
which specifies the fragment's color

*deprecated in webgl2 (which uses GLSL 3.0), but not in webgl1

GLSL - GL Shader Language

e A C-like mini-language

e Basic program looks like:

// some declarations

volid main() {
// main program

}

e Built-in types for small vectors/matrices
(e.g., vec3, mat4)

Task 1: Turn the triangle black

e Change the fragment shader's source code
to set the triangle color to black instead of
white.

e Note: colors are vec4s; the 4th channel is
transparency ("alpha”):

0.0 is fully transparent, 1.0 is fully opaque

Shader Responsibilities

The vertex shader's job is to:

» assign avalue to gl _Position,
which specifies the vertex's position
» assign values to any varying parameters needed later

The fragment shader's job is to:

» assign a value to gl_FragColorf
which specifies the fragment's color

*deprecated in webgl2 (which uses GLSL 3.0), but not in webgl1

Shader Responsibilities

The vertex shader's job is to:

» assign avalue to gl _Position,
which specifies the vertex's position
» assign values to any varying parameters needed later

Lab code so far:
gl Position = vec4(Position, 1.0)

The fragment shader's job is to:

» assign a value to gl_FragColorf
which specifies the fragment's color

*deprecated in webgl2 (which uses GLSL 3.0), but not in webgl1

Shader Responsibilities

The vertex shader's job is to:

» assign avalue to gl _Position,
which specifies the vertex's position
» assign values to any varying parameters needed later

Lab code so far:
gl Position = vec4(Position, 1.0)
The fragment shader's job is to:

» assign a value to gl_FragColorf
which specifies the fragment's color

Lab code so far:
gl FragColor = vec4(0.0, 0.0, 0.0, 1.0)

*deprecated in webgl2 (which uses GLSL 3.0), but not in webgl1

WebGL Data Plumbing

sent in an index buffer

triangles | | |

/!

sent in vertex buffers
application

attributes

vertex program

See also: today's
lecture notes

WebGL Data Plumbing

application

triangles l lll attributes

vertex program
I 1

uniform
variables

See also: today's
lecture notes

GLSL - GL Shader Language

e Built-in types for small vectors/matrices
(e.g0., vec3, mat4). They have friendly
constructors:

 Multiplication does matrix multiplication:
// GL matrices are in column-major order

mat2 A = mat2(1.0, 2.0, 3.0, 4.0);
vec2 x = vec2(1.0, 0.0);
vec2 a = A * x; // a= (1,2)

Task 2: Add a uniform

e Add a uniform variable called Matrix
containing a 4x4 matrix

e In the vertex shader, multiply the Position
attribute of the vertex by the Matrix to
move the triangle vertices.

Terminology: data plumbing

application

triangles l lll attributes

vertex program

uniform
variables

rasterizer

l | varying parameters

/ l varying parameters

fragment program

depth l l color

framebuffer See also: today's
lecture notes

GLSL - GL Shader Language

e varyings are declared in both the Vertex
shader and in the Fragment shader.

e The vertex shader sets their values for each vertex,
then the rasterizer interpolates their values for each
fragment and passes to the fragment shader.

e By convention, varying names are usually
chosen to begin with v, such as vColor or
vNormal

Task 3: Add a varying

e Set up a varying parameter to set the
color at each vertex

e Use the interpolated values in the fragment
shader to set each fragment's color.

