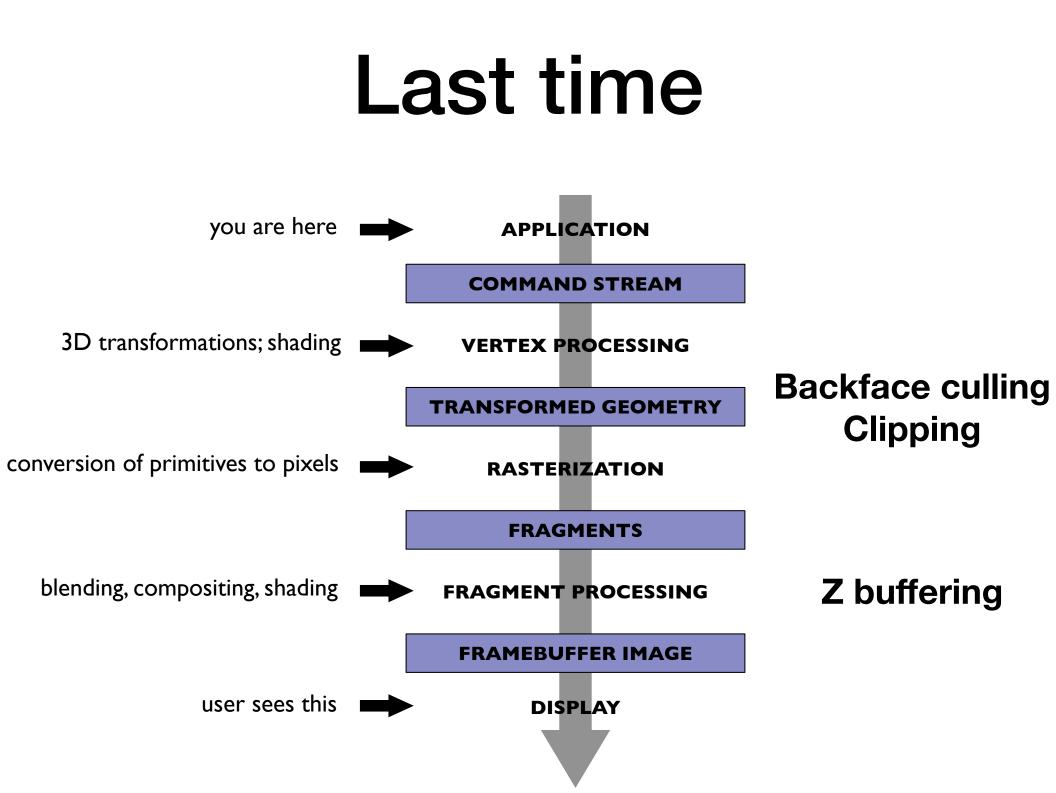
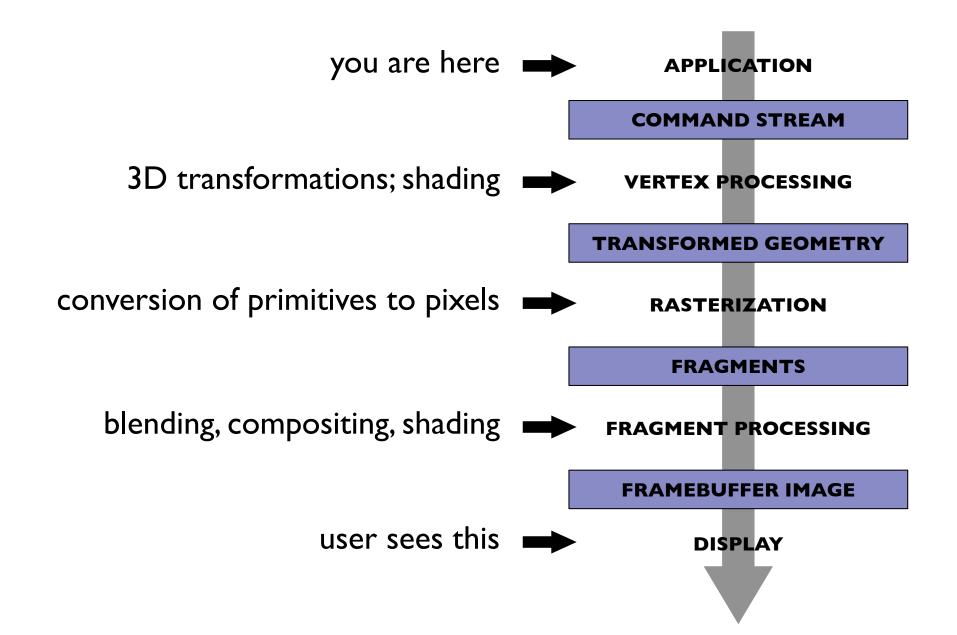

Computer Graphics


Lecture 23 Shading in the Graphics Pipeline

Announcements


- Mini-lab tomorrow on OpenGL: bring a laptop if you can
- Anyone still looking for a final project group?

Graphics Pipeline: Overview

Graphics Pipeline: Overview

OpenGL: One implementation of the graphics pipeline.

OpenGL: One implementation of the graphics pipeline.

And now: a highly abridged and only somewhat accurate history of OpenGL.

OpenGL: The Bad Old Days

- OpenGL was (still is) a state machine.
- Basic usage:
 - 1. Set flags for shading mode
 - 2. Set model, view, and projection matrices
 - 3. Set GL to triangle mode
 - 4. Send vertices to GPU one at a time.
 - 5. Call draw function to draw to the screen.

```
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
```

```
glBegin(GL_TRIANGLES);
glVertex2f( -0.5f, -0.5f );
glVertex2f( 0.5f, -0.5f );
glVertex2f( 0.5f, 0.5f );
glEnd();
```

• Send buffers full of data to GPU up front.

- Send buffers full of data to GPU up front.
- Tell GL how to interpret them (triangles, line segments, ...)

- Send buffers full of data to GPU up front.
- Tell GL how to interpret them (triangles, line segments, ...)
- GL executes custom-written **vertex shader** program on each vertex (to determine its location in **clip space**)

- Send buffers full of data to GPU up front.
- Tell GL how to interpret them (triangles, line segments, ...)
- GL executes custom-written vertex shader program on each vertex (to determine its location in clip space) = normalized device coordinates

- Send buffers full of data to GPU up front.
- Tell GL how to interpret them (triangles, line segments, ...)
- GL executes custom-written vertex shader program on each vertex (to determine its location in clip space) = normalized device coordinates
- GL rasterizes primitives into pixel-shaped fragments

- Send buffers full of data to GPU up front.
- Tell GL how to interpret them (triangles, line segments, ...)
- GL executes custom-written vertex shader program on each vertex (to determine its location in clip space) = normalized device coordinates
- GL rasterizes primitives into pixel-shaped fragments
- GL executes custom-written **fragment shader** program on each fragment to determine its color.

- Send buffers full of data to GPU up front.
- Tell GL how to interpret them (triangles, line segments, ...)
- GL executes custom-written vertex shader program on each vertex (to determine its location in clip space) = normalized device coordinates
- GL rasterizes primitives into pixel-shaped fragments
- GL executes custom-written **fragment shader** program on each fragment to determine its color.
- GL writes fragment colors to framebuffer pixels; neat things appear on your screen.

- Send buffers full of data to GPU up front.
- Tell GL how to interpret them (triangles, ...)
- GL executes custom-written vertex shader program on each vertex (to determine its location in clip space) = normalized device coordinates
- GL rasterizes primitives into pixel-shaped fragments
- GL executes custom-written **fragment shader** program on each fragment to determine its color.
- GL writes fragment colors to framebuffer pixels; neat things appear on your screen.

(send geometry)

- Send buffers full of data to GPU up front.
- Tell GL how to interpret them (triangles, ...)
- GL executes custom-written vertex shader program on each vertex (to determine its location in clip space) = normalized device coordinates
- GL rasterizes primitives into pixel-shaped fragments
- GL executes custom-written **fragment shader** program on each fragment to determine its color.
- GL writes fragment colors to framebuffer pixels; neat things appear on your screen.

(send geometry)

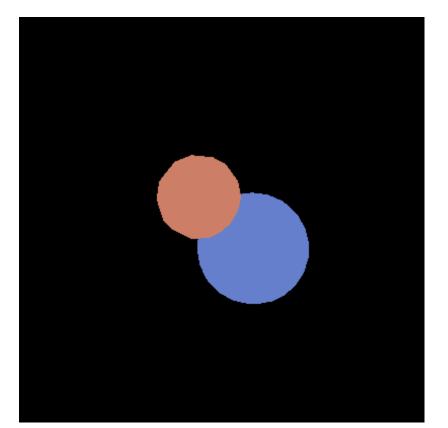
- Send buffers full of data to GPU up front.
- Tell GL how to interpret them (triangles, ...) (write vertex shader)

• GL executes custom-written vertex shader program on each vertex (to determine its location in clip space) = normalized device coordinates

- GL rasterizes primitives into pixel-shaped fragments
- GL executes custom-written **fragment shader** program on each fragment to determine its color.
- GL writes fragment colors to framebuffer pixels; neat things appear on your screen.

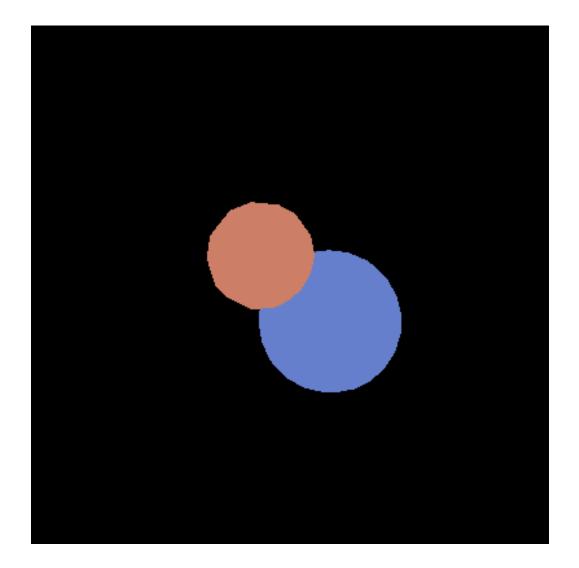
(send geometry)

- Send buffers full of data to GPU up front.
- Tell GL how to interpret them (triangles, ...) (write vertex shader)


- GL executes custom-written vertex shader program on each vertex (to determine its location in clip space) = normalized device coordinates
- GL rasterizes primitives into pixel-shaped fragments

(write fragment shader)

- GL executes custom-written **fragment shader** program on each fragment to determine its color.
- GL writes fragment colors to framebuffer pixels; neat things appear on your screen.


Pipeline for minimal operation

- Vertex stage (input: position / vtx; color / tri)
 - transform position (object to screen space)
 - pass through color
- Rasterizer
 - pass through color
- Fragment stage (output: color)
 - write to color planes

Result of minimal pipeline

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_24f/pipeline_demo/

 We have a pipeline that gives us access to the compute power of shaders and does a bunch of nice things for us.

- We have a pipeline that gives us access to the compute power of shaders and does a bunch of nice things for us.
- Tomorrow we'll learn how to get data in and out

- We have a pipeline that gives us access to the compute power of shaders and does a bunch of nice things for us.
- Tomorrow we'll learn how to get data in and out
- How do we make realistic-looking images using reflection models like Lambertian and Blinn-Phong?

- We have a pipeline that gives us access to the compute power of shaders and does a bunch of nice things for us.
- Tomorrow we'll learn how to get data in and out
- How do we make realistic-looking images using reflection models like Lambertian and Blinn-Phong?

but first, a rant about terminology

• Shade (v.): determine color of a pixel

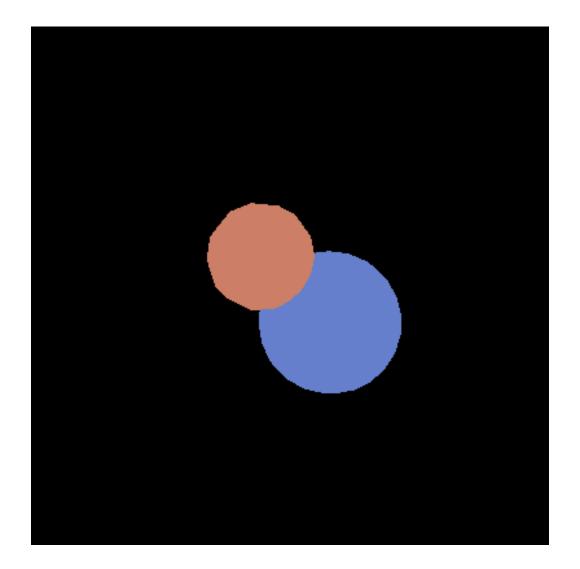
• Shade (v.): determine color of a pixel basically all of computer graphics...

- Shade (v.): determine color of a pixel basically all of computer graphics...
- Shader (n.): a program that runs on GPU

- Shade (v.): determine color of a pixel basically all of computer graphics...
- Shader (n.): a program that runs on GPU vertex shader, fragment shader

- Shade (v.): determine color of a pixel basically all of computer graphics...
- Shader (n.): a program that runs on GPU *vertex shader, fragment shader*
- Shading model (**reflection** or **illumination model**): light interaction model that determines a pixel's color

- Shade (v.): determine color of a pixel basically all of computer graphics...
- Shader (n.): a program that runs on GPU *vertex shader, fragment shader*
- Shading model (**reflection** or **illumination model**): light interaction model that determines a pixel's color *Lambertian reflection, Blinn-Phong reflection*


- Shade (v.): determine color of a pixel basically all of computer graphics...
- Shader (n.): a program that runs on GPU *vertex shader, fragment shader*
- Shading model (**reflection** or **illumination model**): light interaction model that determines a pixel's color *Lambertian reflection, Blinn-Phong reflection*
- Shading algorithm (interpolation technique): when, and in which shader, is the reflection model computed, and using what normals?

- Shade (v.): determine color of a pixel basically all of computer graphics...
- Shader (n.): a program that runs on GPU *vertex shader, fragment shader*
- Shading model (**reflection** or **illumination model**): light interaction model that determines a pixel's color *Lambertian reflection, Blinn-Phong reflection*
- Shading algorithm (interpolation technique): when, and in which shader, is the reflection model computed, and using what normals?

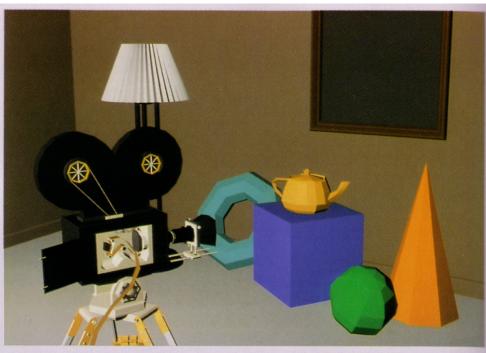
flat shading, Gouraud shading, Phong shading

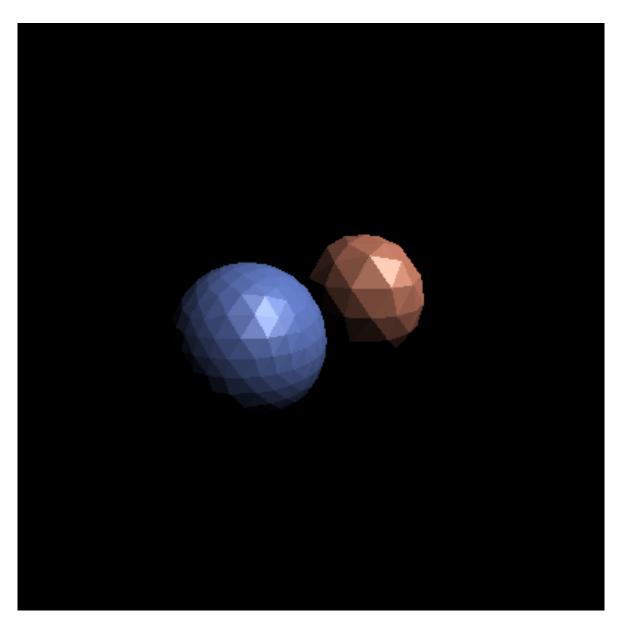
Let's call this "not shading"

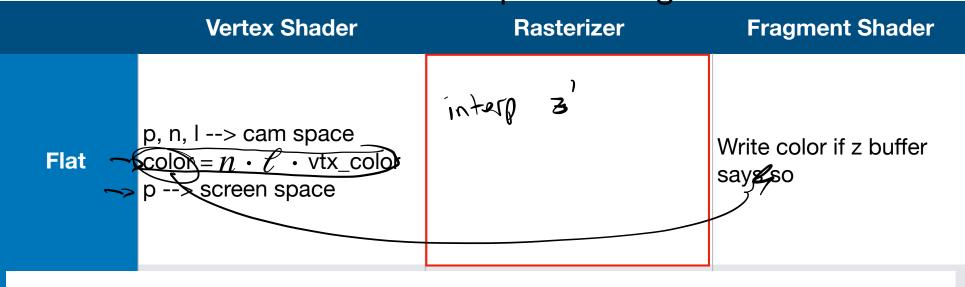
https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci480_24f/pipeline_demo/

Flat shading (interpolation)

- Shade using the real normal of the triangle
 - same result as ray tracing a bunch of triangles without normal interpolation
- Leads to constant shading and faceted appearance
 - truest view of the mesh geometry



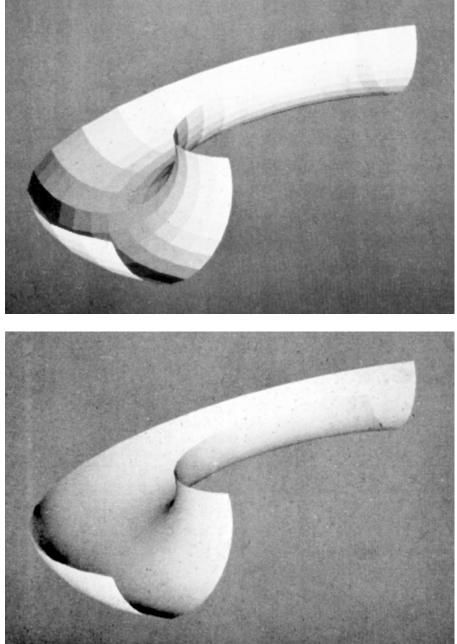

Plate II.29 Shutterbug. Individually shaded polygons with diffuse reflection (Sections 14.4.2 and 16.2.3). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan™ software.)


[Foley et al.]

Pipeline for flat shading

- Vertex stage (input: position / vtx; color and normal / tri)
 - transform position and normal (object to eye space)
 - compute shaded color per triangle using normal
 - transform position (eye to screen space)
- Rasterizer
 - interpolated parameters: z' (screen z)
 - pass through color
- Fragment stage (output: color, z')
 - write to color planes only if interpolated z' < current z'

Result of flat-shading pipeline



Question: Why do we stop at camera space?

	Vertex Shader	Rasterizer	Fragment Shader
Flat	p, n, l> cam space color = $n \cdot \ell \cdot vtx_color$ p> screen space		Write color if z buffer says so
Gouraud	p, n, l> cam space color = $n \cdot \ell \cdot vtx_color$ p> screen space		Write color if z buffer says so
Phong	p, n, l> cam space p> screen space pass through vtx_color		color = n * l * frag_color Write color if z buffer says so

Gouraud shading

- Often we're trying to draw smooth surfaces, so facets are an artifact
 - compute colors at vertices using vertex normals
 - interpolate colors across triangles
 - "Gouraud shading"
 - "Smooth shading"

Gouraud shading

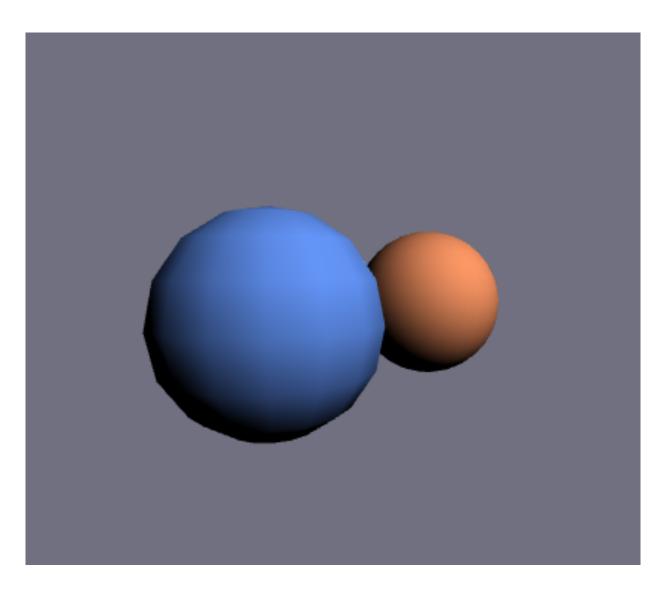
- Often we're trying to draw smooth surfaces, so facets are an artifact
 - compute colors at vertices using vertex normals
 - interpolate colors across triangles
 - "Gouraud shading"
 - "Smooth shading"

Plate II.30 Shutterbug. Gouraud shaded polygons with diffuse reflection (Sections 14.4.3 and 16.2.4). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan™ software.)

[Foley et al.]

Pipeline for Gouraud shading

– transform position (eye to screen space)


• Rasterizer

- interpolated parameters: z' (screen z); r, g, b color

• Fragment stage (output: color, z')

- write to color planes only if interpolated z' < current z'

Result of Gouraud shading pipeline

1				
		Vertex Shader	Rasterizer	Fragment Shader
	Flat	p, n, l> cam space color = <i>n</i> ・ピ・vtx_color p> screen space	Interpolate z'	Write color if z buffer says so
-	Gouraud	p, n, l> cam space color = $n \cdot \ell \cdot vtx_color$ p> screen space		Write color if z buffer says so
	Phong	p, n, l> cam space p> screen space pass through vtx_color		color = n * l * frag_color Write color if z buffer says so

Interpolation

Some possible efficiency hacks:

- Blinn-Phong model requires
 knowing
 - normal
 - light direction
 - view direction
- Hack: use directional lights so ℓ doesn't change
- Hack: pretend viewer is infinitely distant so view direction doesn't change either

VE

VE

Some possible efficiency hacks:

- Blinn-Phong model requires
 knowing
 - normal
 - light direction
 - view direction
- Hack: use directional lights so ℓ doesn't change
- Hack: pretend viewer is infinitely distant so view direction doesn't change either

 \mathbf{v}_E

*

V_E

Non-diffuse Gouraud shading

- Can apply Gouraud shading to any illumination model
 it's just an interpolation method
- Results are not so good with fast-varying models like specular ones
 - problems with any highlights smaller than a triangle
 - (<u>demo</u>)

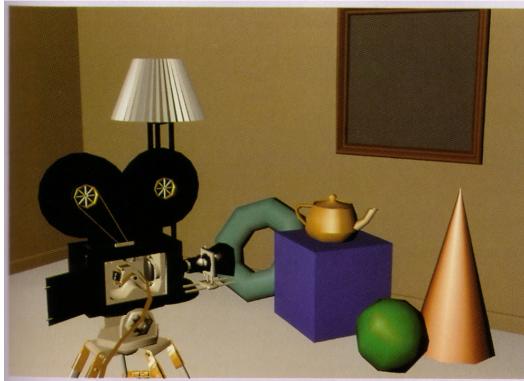
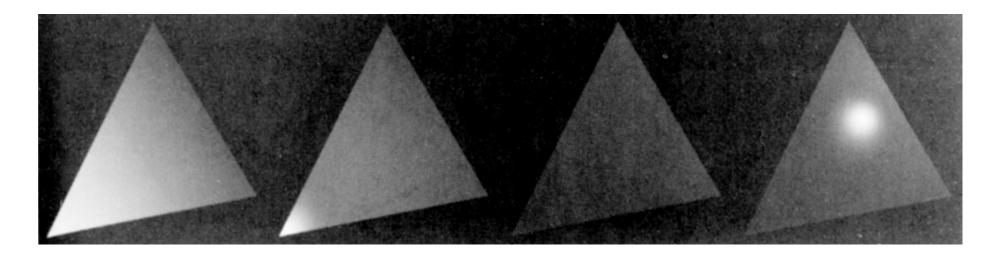



Plate II.31 Shutterbug. Gouraud shaded polygons with specular reflection (Sections 14.4.4 and 16.2.5). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan[™] software.) (*not the same thing as Blinn-Phong reflection)

Per-pixel (Phong*) shading

- Get higher quality by interpolating the normal
 - just as easy as interpolating the color
 - but now we are evaluating the illumination model per pixel rather than per vertex (and normalizing the normal first)
 - in pipeline, this means we are moving illumination from the vertex processing stage to the fragment processing stage

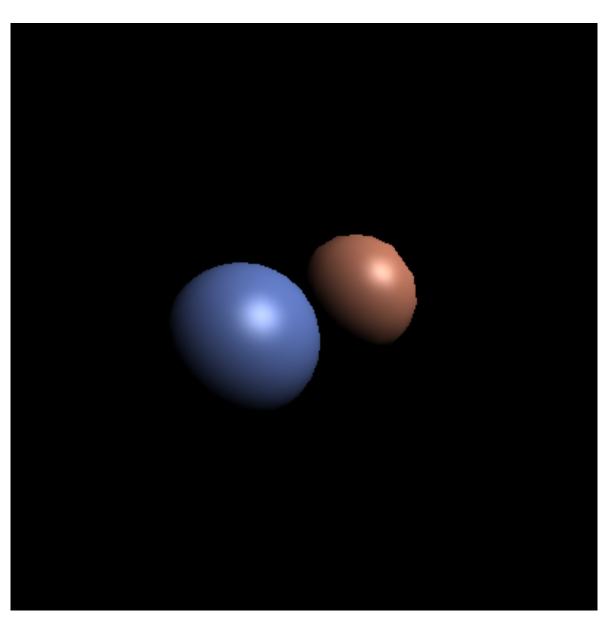
Per-pixel (Phong) shading

• Bottom line: produces much better highlights

tterbug. Gouraud shaded polygons with specular reflection (Sections 14.4.4 yright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using listic RenderMan™ software.)

Plate II.32 Shutterbug. Phong shaded polygons with specular reflection (Sections 14.4.4 and 16.2.5). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan[™] software.)

[Foley et al.]

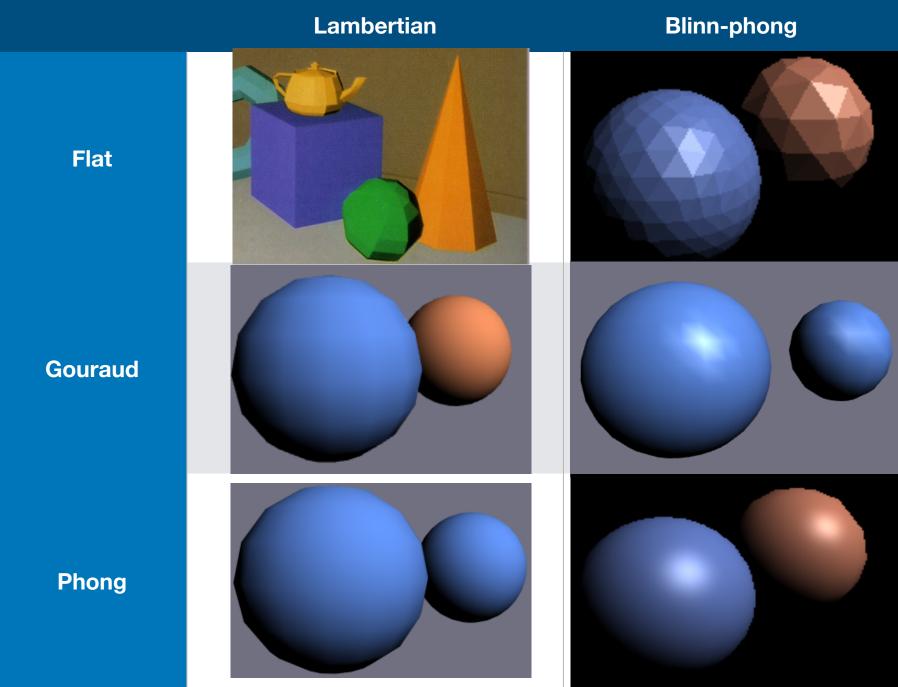

Pipeline for per-pixel shading

- Vertex stage (input: position, color, and normal / vtx)
 - transform position and normal (object to eye space)
 - transform position (eye to screen space)
 - pass through color
- Rasterizer
 - interpolated parameters: z' (screen z); r, g, b color; x, y, z normal
- Fragment stage (output: color, z')

compute shading using interpolated color and normal

- write to color planes only if interpolated z' < current z'

Result of per-pixel shading pipeline



		Vertex Shader	Rasterizer	Fragment Shader
	Flat	p, n, l> cam space color = <i>n</i> ・ピ・vtx_color p> screen space		Write color if z buffer says so
-	Gouraud	p, n, l> cam space color = $n \cdot \ell \cdot vtx_color$ p> screen space		Write color if z buffer says so
	Phong	p, n, l> cam space p> screen space pass through vtx_color		color = n * l * frag_color Write color if z buffer says so

Interpolation

Summary: Shading and Interpolation Techniques reflection

interpolation

1				
		Vertex Shader	Rasterizer	Fragment Shader
	Flat	p, n, l> cam space color = <i>n</i> ・ピ・vtx_color p> screen space	Interpolate z' Pass through color	Write color if z buffer says so
-	Gouraud	p, n, l> cam space color = $n \cdot \ell \cdot vtx_color$ p> screen space	Interpolate z' Interpolate color	Write color if z buffer says so
	Phong	p, n, l> cam space p> screen space pass through vtx_color	Interpolate z' Interpolate vtx_color Interpolate normal	color = n * l * frag_color Write color if z buffer says so

Interpolation

Terminology, so far

- Clipping
- Rasterization
- Interpolation
- Fragment
- Shader