ue

Computer Graphics

Lecture 22
The Graphics Pipeline

Announcements

 Wednesday's class will be a mini-lab.
Please bring a laptop if you can!

e Other lab days coming up:

e Line drawing: Tuesday 11/12

e Splines: Wednesday 11/20 - Friday 11/22

MidLateterm Exam

e Take-home exam out Friday 1174—
Due Monday++/- at 10pm.

\T\,MW
e Similar to the homeworks, but no
collaboration, no google, no chatgpt et al.

 Book is ok. Writing code is ok.

Final Project

e Group formation due Wednesday

* Proposals due Friday

Questions?

Goals

e Understand the basic phases of "The Graphics
Pipeline”

e Know how to perform hidden surface removal

e Know how to use z-buffering to handle occlusion,
and why this is used instead of the painter's
algorithm.

e Know how the near and far planes affect z buffer
precision, and why we use 1/z instead of z for
interpolating.

Graphics Pipeline: Overview

you are here wmp-

3D transformations; shading =s» VERTEX

conversion of primitives to pixels mup

blending, compositing, shading wsp

user sees this ==

VERTEX

Application sends geometric
primitives to renderer (e.g., to GPU) _

VERTEX

Application sends geometric
primitives to renderer (e.g., to GPU) _

Vertices are transformed to image
space (we've done lots of this!)

— VERTEX

Application sends geometric
primitives to renderer (e.g., to GPU) _

__, APPLICATION

Vertices are transformed to image
space (we've done lots of this!)

— VERTEX

Primitives are converted into pixel-
shaped "fragments”; values are
Interpolated across primitives.

Application sends geometric
primitives to renderer (e.g., to GPU) _

__, APPLICATION

Vertices are transformed to image
space (we've done lots of this!)

— VERTEX

Primitives are converted into pixel-
shaped "fragments”; values are
Interpolated across primitives.

Fragments are shaded, blended,
and composited to determine
pixel colors.

Application sends geometric
primitives to renderer (e.g., to GPU) _

__, APPLICATION

Vertices are transformed to image
space (we've done lots of this!)

— VERTEX

Primitives are converted into pixel-
shaped "fragments”; values are
Interpolated across primitives.

Fragments are shaded, blended,
and composited to determine
pixel colors.

Pixel colors written to the ————
framebuffer appear on the screen.

Command Stream

Application sends geometric
primitives to renderer (e.g., to GPU) —

—

What primitives?

VERTEX

Command Stream

Application sends geometric
primitives to renderer (e.g., to GPU) —

What primitives?

e Points
VERTEX

Command Stream

Application sends geometric
primitives to renderer (e.g., to GPU) —

What primitives?

 Points

VERTEX

* Line segments

— and chains of connected line segments

Command Stream

Application sends geometric
primitives to renderer (e.g., to GPU) —

What primitives?

 Points

VERTEX

* Line segments
— and chains of connected line segments

* Triangles

Command Stream

Application sends geometric
primitives to renderer (e.g., to GPU) —

What primitives?

 Points

VERTEX

* Line segments

— and chains of connected line segments
* Triangles
* And that’s all!

— Curves? Approximate them with chains of line
segments

— Polygons? Break them up into triangles

— Curved surfaces? Approximate them with
triangles

Command Stream

Application sends geometric
primitives to renderer (e.g., to GPU) —

What primitives?

 Points

VERTEX

Line segments

— and chains of connected line segments

Triangles
And that’s all!

— Curves? Approximate them with chains of line
segments

— Polygons? Break them up into triangles

— Curved surfaces? Approximate them with
triangles

Trend over the decades: toward minimal primitives

— simple, uniform, repetitive: good for parallelism

Vertex Processing

APPL TION

Vertices are transformed to clip space
Vertex values are computed
(we've done most of this!)

object space camera space

R

modeling c?mera _ projection viewport
transformation ~ transformation transformation transformation

v

world space _canonical
view volume

L
>

screen space

Rasterization

* First job: enumerate the pixels covered
by a primitive

) VERTEX
—which pixels fall inside triangle? /m‘
—includes "clipping” content outside view

volume

* Second job: interpolate values across
the primitive
—e.g. colors computed at vertices
—e.g. normals at vertices
—e.g. texture coordinates

Rasterization

Rasterization algorithms: starting Friday

* First job: enumerate the pixels covered

by a primitive VERTEX

—which pixels fall inside triangle?

—includes "clipping” content outside view
volume

*|Second job: interpolate values across

the primitive

—e.g. colors computed at vertices

—e.g. normals at vertices
—e.g. texture coordinates

Ve

\ g\ O]“ ﬁ
R

Fragment Processing

* Hidden surface removal (occlusion) -
only the closest object is drawn

* Per-fragment shading:

* determine color of the pixel based
on a shading model

* diffuse color might come from a
texture

* Blending, compositing - e.g.:
* anti-aliasing
* transparency / alpha blending

Fragment Processing

Painter's algorithm; Z buffering: today

* [Hidden surface removal (occlusion) -
only the closest object is drawn

* Per-fragment shading:

* determine color of the pixel based
on a shading model

* diffuse color might come from a
texture

* Blending, compositing - e.g.:
* anti-aliasing
* transparency / alpha blending

Hidden Surface Removal

Two motivations: realism and efficiency

Back face culling

* For closed shapes you will never see the inside
—therefore only draw surfaces that face the camera
—implement by checkingh -v > 0

/ v
\

|

Back face culling

* For closed shapes you will never see the inside
—therefore only draw surfaces that face the camera
—implement by checkingh -v > 0

Q: In which space would you
prefer to do backface culling? n E

/ v
\

|

A: Model
B: World

C: Camera
D: Clip (/NDC/CVV)

Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

How would you deal with this?

Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
e Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
In the drawing order

Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
e Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
In the drawing order

{
\\\!

% .

|
\

Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
e Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
In the drawing order

Works great if the ordering is
easy to find... o

{
\\\\

% .

|
%

Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
e Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
In the drawing order

Works great if the ordering is
easy to find... o

{
\\\\

% .

(
%

... but often it isn't.
Example: z.obj

The z buffer

* In many (most) applications maintaining a z sort is too
expensive
— changes all the time as the view changes
— many data structures exist, but complex

* Solution: draw in any order, keep track of closest

— allocate extra channel per pixel to keep track of closest depth
so far

— when drawing, compare object’s depth to current closest
depth and discard if greater

— this works just like any other compositing operation

© 2014 Steve Marschner ¢ 19

The z buffer

[1e 30 4Asj04]

)
O O
e
O ®

f
-v--v.-nv -v<.-- - AR - Lo e m
wliolo|o|o|o|o|o wlo|lo ta
R
wiw|o|o|o|o|o|o| |lv|lv|o C 0
wlwjw| olo|o|o|o| [v]|w|w be
wiwviw|w| o|lo|o|lo| |[v|w|w QO
wiv|v|jv|wv|o|o|o| |v|wv|w >

© mm——
wivlvjviv|v|o|o| |[v|w|w v O
wivlv/iv|v|w|w|o| |v|w|wl mm
2 O
I I c 9O

© m——
0 7 @
VIb

wln

rs
Toll RTo N H¥e) Oa
wlw|w|w mln
wlw|w|w|w UV T
wiv/v|v|jwv|w mn
(]
wiviviviv|iv|w as
+ + fml(
L G
olo|o|o|o|o|o|o| |o|o|o|o|o|lo|o|o eo
olo|o|o|o|o|o|o| |vw|o|lo|o|o|lo|o|o PW
o|lo|lo|o|o|o|o|o| |[vw|w|o|o|o|lo|o|o mt
o|lo|o|o|o|o|o|o| |v|w|w|o|o|o|o|o alma
o|lo|lo|o|o|o|o|lo| |vw|iwvw|w|lw|o|o|o|o X =
Oolo|lo|jo|o|o|o|lo| |vwvw|iwv|lw|lw|o|o|o eh
olo|o|o|o|o|o|o| |lvjwvw|lv|w|lv|w|o|o n.ru%
o|lo|o|o|o|o|o|lo| |viwviv|wv|lwv|lwv|w|o c O
A e
O QA
C QO
c <

— store z as an integer for speed and memory efficiency

(at the expense of precision!)

20

© 2014 Steve Marschner *

Precision in z buffer: Throwback

n 0 0 0 7 °
p_ 0 n 0 0 10
0 Ofn+f —fn
0 0 1 0 |
0 / 10 20 30

Desmos Demo

* The precision is distributed between the near and far
clipping planes
— this is why these planes have to exist

— also why you can’t always just set them to very small and very
large distances

* Generally use z’ (not world z) in z buffer, however...

© 2014 Steve Marschner 21

https://www.desmos.com/calculator/13dinkwite

Interpolating in projection

projection plane

eye point
®

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner ¢ 22

Interpolating in projection

projection plane

X

projections of
endpoints

/

eye point

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner ¢ 22

Interpolating in projection

projection plane

projection
eye point " of midpoint

L 4

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner ¢ 22

Interpolating in projection

projection plane

eye point

projects
to midpoint

20 (zo+21)/2 Z1

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner ¢ 22

Interpolating in projection

projection plane

eye point i /

M & 124 u2r ool
——

equally spaced z (distance)

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner ¢ 22

Interpolating in projection

projection plane

eye point

projects
to midpoint

zo (zo+2z7)/2 Z

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner ¢ 22

Interpolating in projection

projection plane

eye point

M & 124 u2r ool
——

equally spaced z'(screen depth)

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner ¢ 22

How did this happen?

screen
space
depth

L7 =f+n

camera
space

fn depth

v

P =

O O O 3

S O I O

0 0]

0 0
n+f —fn

1 0 |

How did this happen?

screen
e
depth
eit , fn depth
7=f+n J
é
, 1
Z' = ky — ky—

$

P =

O O O 3

S O I O

0 0]

0 0
n+f —fn

1 0 |

How did this happen?

screen
space camera
depth space
eit , fn depth
7=f+n J
$
, 1
2= ky — ky—
<
=1
X —

<

P =

O O O 3

S O I O

0 0]

0 0
n+f —fn

1 0 |

How did this happen?

screen
e
deith, fn depth
7=f+n J
$
, 1
2= ky — ky—
<
=1
X —
<
—1
X ——

/

<

P =

O O O 3

S O I O

0 0]

0 0
n+f —fn

1 0 |

n 0 0 0
How did this happen? 0 n 0 0
screen P =
space camera 0 0 n+f —fn
space
deith | f_l_ fn dopth 0 0 1 0 _
= n
.
, 1
2= ky — ky—
Z
=1
X —
Z
instead of using the smallest Z/,
—1 |
X —-= use the largest —

e Z

How did this happen?

screen

camera

space
depth

OO0

5]s[s5][s5[5]5]5]¢
5/5|/5[5[5[5]0 ¢

5[5[5[5[5[0]o]0’

5{5|5|0(0|0]|0]|0O

5/5(0|0|0]|0|0|0

5/olololo|oolo

0/0|0|0O]JO|O|O O

5|/5]|5[5]5]5]5]0c

5151551815100

515151515000

5/5[5|5]|5]|5]5]
5|/5|5[5]5]5
5|/5[5[5]5

53

5
5

0/0f0]0]0O]O0

o/0[0|O|O]|O|O]|O
0/0|0|O0O|O]|O|O]|O
0({0|0|0|O0O|0O|O0]O

o|o|o0o|OofO|O|O|O| + |5]|5]|5]|5

0|0(0|O0O|O0]|O|O]O
0|0|0O|O0O|O|O|O]O
0O|0|0O|O0O|O|O|O]O

0/0[0|0O]|0O]JO]O]O

5/5|/5]|5]515(5]|0

5151515151500

5}15|5156]5|(0(0]0

+
o
o
o
o
o}
Yo}
Yo}
Yo}

o
o
o
o
o
w0
Te}
Te}

o
o
o
o
o
o
7o}
w

o
o
o
o
o
o
o
0

o
o
o
o
o
o
o
o

instead of using the smallest Z/,

1
Z/

use the largest

Graphics Pipeline: Overview

you are here wmp-

3D transformations; shading =s» VERTEX

conversion of primitives to pixels mup

blending, compositing, shading wsp

user sees this ==

