
Computer Graphics
Lecture 22


The Graphics Pipeline

 



Announcements
• Wednesday's class will be a mini-lab. 

Please bring a laptop if you can!


• Other lab days coming up:


• Line drawing: Tuesday 11/12


• Splines: Wednesday 11/20 - Friday 11/22



MidLateterm Exam
• Take-home exam out Friday 11/4 

Due Monday 11/7 at 10pm.


• Similar to the homeworks, but no 
collaboration, no google, no chatgpt et al.


• Book is ok. Writing code is ok.



Final Project
• Group formation due Wednesday


• Proposals due Friday



Questions?



Goals
• Understand the basic phases of "The Graphics 

Pipeline"


• Know how to perform hidden surface removal


• Know how to use z-buffering to handle occlusion, 
and why this is used instead of the painter's 
algorithm.


• Know how the near and far planes affect z buffer 
precision, and why we use 1/z instead of z for 
interpolating.



Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Application sends geometric 
primitives to renderer (e.g., to GPU)



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Application sends geometric 
primitives to renderer (e.g., to GPU)

Vertices are transformed to image 
space (we've done lots of this!)



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Application sends geometric 
primitives to renderer (e.g., to GPU)

Vertices are transformed to image 
space (we've done lots of this!)

Primitives are converted into pixel-
shaped "fragments"; values are 
interpolated across primitives.



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Application sends geometric 
primitives to renderer (e.g., to GPU)

Vertices are transformed to image 
space (we've done lots of this!)

Primitives are converted into pixel-
shaped "fragments"; values are 
interpolated across primitives.

Fragments are shaded, blended, 
and composited to determine 
pixel colors.



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Application sends geometric 
primitives to renderer (e.g., to GPU)

Vertices are transformed to image 
space (we've done lots of this!)

Primitives are converted into pixel-
shaped "fragments"; values are 
interpolated across primitives.

Fragments are shaded, blended, 
and composited to determine 
pixel colors.

Pixel colors written to the 
framebuffer appear on the screen.



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Application sends geometric 
primitives to renderer (e.g., to GPU)

Command Stream
What primitives?



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Application sends geometric 
primitives to renderer (e.g., to GPU)

• Points

Command Stream
What primitives?



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Application sends geometric 
primitives to renderer (e.g., to GPU)

• Points

• Line segments
– and chains of connected line segments

Command Stream
What primitives?



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Application sends geometric 
primitives to renderer (e.g., to GPU)

• Points

• Line segments
– and chains of connected line segments

• Triangles

Command Stream
What primitives?



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Application sends geometric 
primitives to renderer (e.g., to GPU)

• Points

• Line segments
– and chains of connected line segments

• Triangles

• And that’s all!
– Curves? Approximate them with chains of line 

segments
– Polygons? Break them up into triangles
– Curved surfaces? Approximate them with 

triangles

Command Stream
What primitives?



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Application sends geometric 
primitives to renderer (e.g., to GPU)

• Points

• Line segments
– and chains of connected line segments

• Triangles

• And that’s all!
– Curves? Approximate them with chains of line 

segments
– Polygons? Break them up into triangles
– Curved surfaces? Approximate them with 

triangles

• Trend over the decades: toward minimal primitives
– simple, uniform, repetitive: good for parallelism

Command Stream
What primitives?



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Vertices are transformed to clip space  
Vertex values are computed

(we've done most of this!)

✐

✐

✐

✐

✐

✐

✐

✐

7.1. Viewing Transformations 147

object space

world space

camera space

canonical
view volume

sc
re

e
n

 s
p

a
ce

modeling
transformation

viewport
transformation

projection
transformation

camera
transformation

Figure 7.2. The sequence of spaces and transformations that gets objects from their

original coordinates into screen space.

space) to camera coordinates or places them in camera space. The projection

transformation moves points from camera space to the canonical view volume.

Finally, the viewport transformation maps the canonical view volume to screen Other names: camera

space is also “eye space”

and the camera

transformation is

sometimes the “viewing

transformation;” the

canonical view volume is

also “clip space” or

“normalized device

coordinates;” screen space

is also “pixel coordinates.”

space.

Each of these transformations is individually quite simple. We’ll discuss them

in detail for the orthographic case beginning with the viewport transformation,

then cover the changes required to support perspective projection.

7.1.1 The Viewport Transformation

We begin with a problemwhose solution will be reused for any viewing condition.

We assume that the geometry we want to view is in the canonical view volume The word “canonical” crops

up again—it means

something arbitrarily

chosen for convenience.

For instance, the unit circle

could be called the

“canonical circle.”

and we wish to view it with an orthographic camera looking in the −z direction.
The canonical view volume is the cube containing all 3D points whose Cartesian

coordinates are between −1 and +1—that is, (x, y, z) ∈ [−1, 1]3 (Figure 7.3).
We project x = −1 to the left side of the screen, x = +1 to the right side of the
screen, y = −1 to the bottom of the screen, and y = +1 to the top of the screen.

Recall the conventions for pixel coordinates fromChapter 3: each pixel “owns”

a unit square centered at integer coordinates; the image boundaries have a half-

unit overshoot from the pixel centers; and the smallest pixel center coordinates

Vertex Processing



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Rasterization
• First job: enumerate the pixels covered 

by a primitive
– which pixels fall inside triangle?
– includes "clipping" content outside view 

volume

• Second job: interpolate values across 
the primitive
– e.g. colors computed at vertices
– e.g. normals at vertices
– e.g. texture coordinates

AO



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Rasterization
• First job: enumerate the pixels covered 

by a primitive
– which pixels fall inside triangle?
– includes "clipping" content outside view 

volume

• Second job: interpolate values across 
the primitive
– e.g. colors computed at vertices
– e.g. normals at vertices
– e.g. texture coordinates

Rasterization algorithms: starting Friday



s.tt



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Fragment Processing
• Hidden surface removal (occlusion) - 

only the closest object is drawn
• Per-fragment shading:

• determine color of the pixel based 
on a shading model

• diffuse color might come from a 
texture

• Blending, compositing - e.g.:
• anti-aliasing
• transparency / alpha blending



APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

Fragment Processing
• Hidden surface removal (occlusion) - 

only the closest object is drawn
• Per-fragment shading:

• determine color of the pixel based 
on a shading model

• diffuse color might come from a 
texture

• Blending, compositing - e.g.:
• anti-aliasing
• transparency / alpha blending

Painter's algorithm; Z buffering: today



Hidden Surface Removal
Two motivations: realism and efficiency



Back face culling
• For closed shapes you will never see the inside

–therefore only draw surfaces that face the camera
–implement by checking n . v > 0

n
vn

v



Back face culling
• For closed shapes you will never see the inside

–therefore only draw surfaces that face the camera
–implement by checking n . v > 0

n
vn

v

Q: In which space would you 
prefer to do backface culling?

A: Model

B: World

C: Camera

D: Clip (/NDC/CVV)



Handling Occlusion
• What if multiple triangles are facing the viewer 

at different depths?

How would you deal with this?



Handling Occlusion
• What if multiple triangles are facing the viewer 

at different depths?

• Painter's algorithm: draw them back-to-front

• Topological sort on the occlusion graph:

• if A ever occludes B, it must come after B 

in the drawing order



Handling Occlusion
• What if multiple triangles are facing the viewer 

at different depths?

• Painter's algorithm: draw them back-to-front

• Topological sort on the occlusion graph:

• if A ever occludes B, it must come after B 

in the drawing order



Handling Occlusion
• What if multiple triangles are facing the viewer 

at different depths?

• Painter's algorithm: draw them back-to-front

• Topological sort on the occlusion graph:

• if A ever occludes B, it must come after B 

in the drawing order

Works great if the ordering is 
easy to find...



Handling Occlusion
• What if multiple triangles are facing the viewer 

at different depths?

• Painter's algorithm: draw them back-to-front

• Topological sort on the occlusion graph:

• if A ever occludes B, it must come after B 

in the drawing order

Works great if the ordering is 
easy to find...

... but often it isn't.

Example: z.obj



© 2014 Steve Marschner • 

The z buffer

• In many (most) applications maintaining a z sort is too 
expensive
– changes all the time as the view changes
– many data structures exist, but complex

• Solution: draw in any order, keep track of closest
– allocate extra channel per pixel to keep track of closest depth 

so far
– when drawing, compare object’s depth to current closest 

depth and discard if greater
– this works just like any other compositing operation

19



© 2014 Steve Marschner • 

The z buffer

– another example of a memory-intensive brute force 
approach that works and has become the standard

– store z as an integer for speed and memory efficiency 
(at the expense of precision!)

[F
ol

ey
 e

t 
al

.]

20



© 2014 Steve Marschner • 

Precision in z buffer: Throwback

• The precision is distributed between the near and far 
clipping planes
– this is why these planes have to exist
– also why you can’t always just set them to very small and very 

large distances

• Generally use z’ (not world z) in z buffer, however...
21

P =

�

⇧⇧⇤

n 0 0 0
0 n 0 0
0 0 n + f �fn
0 0 1 0

⇥

⌃⌃⌅

Desmos Demo

µ

https://www.desmos.com/calculator/13dinkwite


© 2014 Steve Marschner • 

Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space

22



© 2014 Steve Marschner • 

Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space

22



© 2014 Steve Marschner • 

Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space

22



© 2014 Steve Marschner • 

Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space

22



© 2014 Steve Marschner • 

Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space

22



© 2014 Steve Marschner • 

Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space

22



© 2014 Steve Marschner • 

Interpolating in projection

linear interp. in screen space ≠ linear interp. in world (eye) space

22



P =

�

⇧⇧⇤

n 0 0 0
0 n 0 0
0 0 n + f �fn
0 0 1 0

⇥

⌃⌃⌅

z′ = f + n − fn
z

How did this happen?
screen 
space 
depth

camera 
space 
depth



P =

�

⇧⇧⇤

n 0 0 0
0 n 0 0
0 0 n + f �fn
0 0 1 0

⇥

⌃⌃⌅

z′ = f + n − fn
z

How did this happen?

z′ = k1 − k2
1
z

screen 
space 
depth

camera 
space 
depth



P =

�

⇧⇧⇤

n 0 0 0
0 n 0 0
0 0 n + f �fn
0 0 1 0

⇥

⌃⌃⌅

z′ = f + n − fn
z

z′ ∝ −1
z

How did this happen?

z′ = k1 − k2
1
z

screen 
space 
depth

camera 
space 
depth



P =

�

⇧⇧⇤

n 0 0 0
0 n 0 0
0 0 n + f �fn
0 0 1 0

⇥

⌃⌃⌅

z′ = f + n − fn
z

z′ ∝ −1
z

z ∝ −1
z′ 

How did this happen?

z′ = k1 − k2
1
z

screen 
space 
depth

camera 
space 
depth



P =

�

⇧⇧⇤

n 0 0 0
0 n 0 0
0 0 n + f �fn
0 0 1 0

⇥

⌃⌃⌅

z′ = f + n − fn
z

z′ ∝ −1
z

z ∝ −1
z′ 

instead of using the smallest , 

use the largest 

z′ 

1
z′ 

How did this happen?

z′ = k1 − k2
1
z

screen 
space 
depth

camera 
space 
depth



P =

�

⇧⇧⇤

n 0 0 0
0 n 0 0
0 0 n + f �fn
0 0 1 0

⇥

⌃⌃⌅

z′ = f + n − fn
z

z′ ∝ −1
z

z ∝ −1
z′ 

instead of using the smallest , 

use the largest 

z′ 

1
z′ 

How did this happen?

z′ = k1 − k2
1
z

screen 
space 
depth

camera 
space 
depth



Graphics Pipeline: Overview
APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

you are here

3D transformations; shading

conversion of primitives to pixels

blending, compositing, shading

user sees this




