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Computer Graphics

Lecture 22
The Graphics Pipeline



Announcements

 Wednesday's class will be a mini-lab.
Please bring a laptop if you can!

e Other lab days coming up:

e Line drawing: Tuesday 11/12

e Splines: Wednesday 11/20 - Friday 11/22



MidLateterm Exam

e Take-home exam out Friday 1174—
Due Monday++/- at 10pm.

\T\,MW
e Similar to the homeworks, but no
collaboration, no google, no chatgpt et al.

 Book is ok. Writing code is ok.



Final Project

e Group formation due Wednesday

* Proposals due Friday



Questions?



Goals

e Understand the basic phases of "The Graphics
Pipeline”

e Know how to perform hidden surface removal

e Know how to use z-buffering to handle occlusion,
and why this is used instead of the painter's
algorithm.

e Know how the near and far planes affect z buffer
precision, and why we use 1/z instead of z for
interpolating.



Graphics Pipeline: Overview

you are here wmp-

3D transformations; shading =s»  VERTEX

conversion of primitives to pixels mup

blending, compositing, shading wsp

user sees this ==
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Application sends geometric
primitives to renderer (e.g., to GPU) _

__, APPLICATION

Vertices are transformed to image
space (we've done lots of this!)

— VERTEX

Primitives are converted into pixel-
shaped "fragments”; values are
Interpolated across primitives.

Fragments are shaded, blended,
and composited to determine
pixel colors.

Pixel colors written to the ————
framebuffer appear on the screen.
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Command Stream

Application sends geometric
primitives to renderer (e.g., to GPU) —

What primitives?

 Points

VERTEX

Line segments

— and chains of connected line segments

Triangles
And that’s all!

— Curves? Approximate them with chains of line
segments

— Polygons? Break them up into triangles

— Curved surfaces? Approximate them with
triangles

Trend over the decades: toward minimal primitives

— simple, uniform, repetitive: good for parallelism



Vertex Processing

APPL TION

Vertices are transformed to clip space
Vertex values are computed
(we've done most of this!)

object space camera space

R

modeling c?mera _ projection viewport
transformation ~ transformation transformation transformation

v

world space _canonical
view volume

L
>

screen space




Rasterization

* First job: enumerate the pixels covered
by a primitive

) VERTEX
—which pixels fall inside triangle? /m‘
—includes "clipping” content outside view

volume

* Second job: interpolate values across
the primitive
—e.g. colors computed at vertices
—e.g. normals at vertices
—e.g. texture coordinates




Rasterization

Rasterization algorithms: starting Friday

* First job: enumerate the pixels covered

by a primitive VERTEX

—which pixels fall inside triangle?

—includes "clipping” content outside view
volume

*|Second job: interpolate values across

the primitive

—e.g. colors computed at vertices

—e.g. normals at vertices
—e.g. texture coordinates
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Fragment Processing

* Hidden surface removal (occlusion) -
only the closest object is drawn

* Per-fragment shading:

* determine color of the pixel based
on a shading model

* diffuse color might come from a
texture

* Blending, compositing - e.g.:
* anti-aliasing
* transparency / alpha blending




Fragment Processing

Painter's algorithm; Z buffering: today

* [Hidden surface removal (occlusion) -
only the closest object is drawn

* Per-fragment shading:

* determine color of the pixel based
on a shading model

* diffuse color might come from a
texture

* Blending, compositing - e.g.:
* anti-aliasing
* transparency / alpha blending




Hidden Surface Removal

Two motivations: realism and efficiency




Back face culling

* For closed shapes you will never see the inside
—therefore only draw surfaces that face the camera
—implement by checkingh -v > 0
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Back face culling

* For closed shapes you will never see the inside
—therefore only draw surfaces that face the camera
—implement by checkingh -v > 0

Q: In which space would you
prefer to do backface culling? n E

/ v
\

|

A: Model
B: World

C: Camera
D: Clip (/NDC/CVV)



Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

How would you deal with this?
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In the drawing order



Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
e Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
In the drawing order

{
\\\!

% .

|
\




Handling Occlusion
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Handling Occlusion

e What if multiple triangles are facing the viewer
at different depths?

e Painter's algorithm: draw them back-to-front
e Topological sort on the occlusion graph:

e if A ever occludes B, it must come after B
In the drawing order

Works great if the ordering is
easy to find... o

{
\\\\

% .

(
%

... but often it isn't.
Example: z.obj




The z buffer

* In many (most) applications maintaining a z sort is too
expensive
— changes all the time as the view changes
— many data structures exist, but complex

* Solution: draw in any order, keep track of closest

— allocate extra channel per pixel to keep track of closest depth
so far

— when drawing, compare object’s depth to current closest
depth and discard if greater

— this works just like any other compositing operation

© 2014 Steve Marschner ¢ 19



The z buffer
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— store z as an integer for speed and memory efficiency

(at the expense of precision!)
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Precision in z buffer: Throwback

n 0 0 0 7 °
p_ 0 n 0 0 10
0 Ofn+f —fn
0 0 1 0 |
0 / 10 20 30

Desmos Demo

* The precision is distributed between the near and far
clipping planes
— this is why these planes have to exist

— also why you can’t always just set them to very small and very
large distances

* Generally use z’ (not world z) in z buffer, however...

© 2014 Steve Marschner 21


https://www.desmos.com/calculator/13dinkwite

Interpolating in projection

projection plane

eye point
®

linear interp. in screen space # linear interp. in world (eye) space
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Interpolating in projection

projection plane

X

projections of
endpoints

/

eye point

linear interp. in screen space # linear interp. in world (eye) space
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Interpolating in projection

projection plane

projection
eye point " of midpoint

L 4

linear interp. in screen space # linear interp. in world (eye) space
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Interpolating in projection

projection plane

eye point

projects
to midpoint

20 (zo+21)/2 Z1

linear interp. in screen space # linear interp. in world (eye) space

© 2014 Steve Marschner ¢ 22



Interpolating in projection

projection plane

eye point i /

M & 124 u2r ool
——

equally spaced z (distance)

linear interp. in screen space # linear interp. in world (eye) space
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Interpolating in projection

projection plane

eye point

projects
to midpoint

zo (zo+2z7)/2 Z

linear interp. in screen space # linear interp. in world (eye) space
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Interpolating in projection

projection plane

eye point

M & 124 u2r ool
——

equally spaced z'(screen depth)

linear interp. in screen space # linear interp. in world (eye) space
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How did this happen?

screen
space
depth

L7 =f+n

camera
space

fn depth

v
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S O I O

0 0 ]

0 0
n+f —fn

1 0 |



How did this happen?

screen
e
depth
eit , fn depth
7=f+n J
é
, 1
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$

P =

O O O 3

S O I O

0 0 ]

0 0
n+f —fn

1 0 |
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How did this happen?

screen
e
deith, fn depth
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n 0 0 0
How did this happen? 0 n 0 0
screen P =
space camera 0 0 n+f —fn
space
deith | f_l_ fn dopth 0 0 1 0 _
= n
.
, 1
2= ky — ky—
Z
=1
X —
Z
instead of using the smallest Z/,
—1 |
X —-= use the largest —

e Z



How did this happen?
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1
Z/

use the largest
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