

Computer Graphics

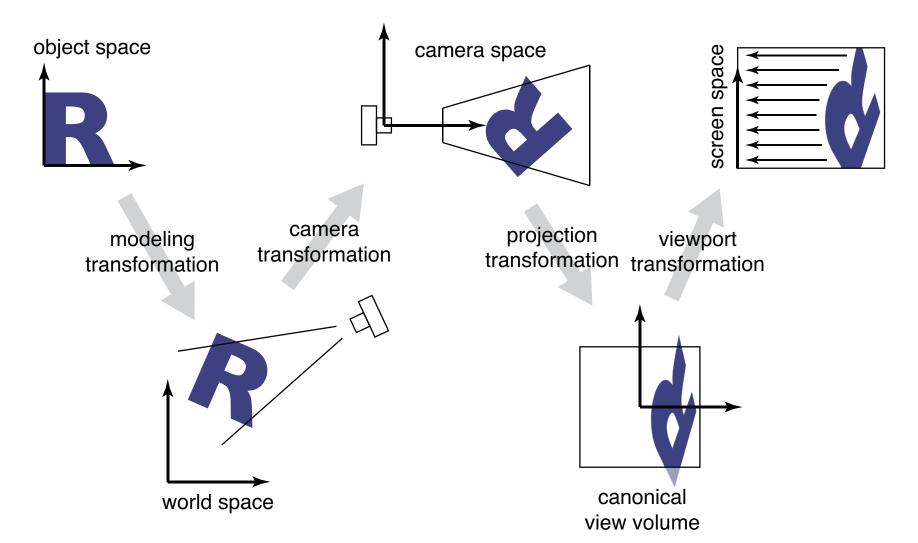
Lecture 19 Viewing Transformations - 2

Announcements

- "Midterm" exam is out one week from Friday
 - Takehome; 20% of your grade, inspired by HW
 - Upshot: if you got HW problems wrong, make sure you know how to get them right. You have nearly 2 weeks, so now's the time to start reviewing.
- Also be thinking about final project ideas and groups.

Viewing Transformations: Overview

A standard sequence of transforms to go from **object (model) space** to **screen (image) space**



A Wireframe Rendering Algorithm

Form matrices $M_{vp}, M_{proj}, M_{cam}, M_{model}$

 $M \leftarrow M_{vp} M_{proj} M_{cam} M_{model}$

for each line segment $\mathbf{a}_i, \mathbf{b}_i$:

$$\mathbf{p} \leftarrow M\mathbf{a}_i$$

 $\mathbf{q} \leftarrow M\mathbf{b}_i$

draw_line(p,q)

Viewing Transformations: Demo

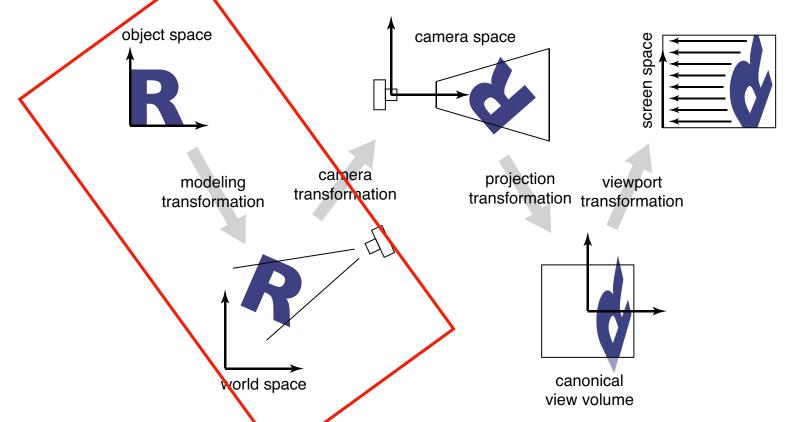
 <u>https://www.cs.cornell.edu/courses/</u> <u>cs4620/2020fa/demos_cs4620/</u> <u>view_explore/view_explore.html</u>

Model Matrix

Input: Scene in model coordinates

Parameters: Pose, scale, etc of model in scene

Output: Scene in world coordinates

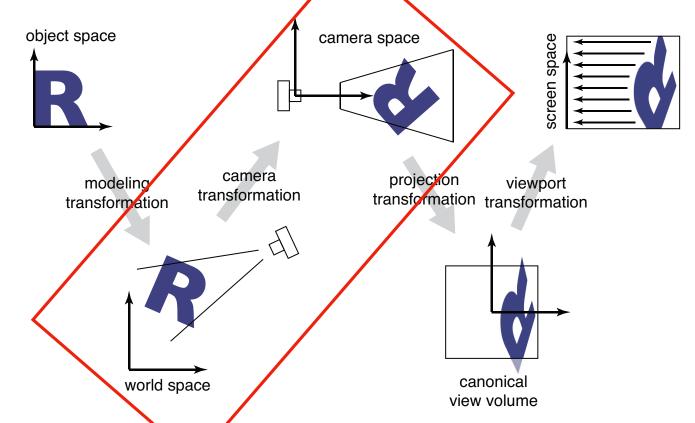


Camera Matrix

Input: Scene in world coordinates

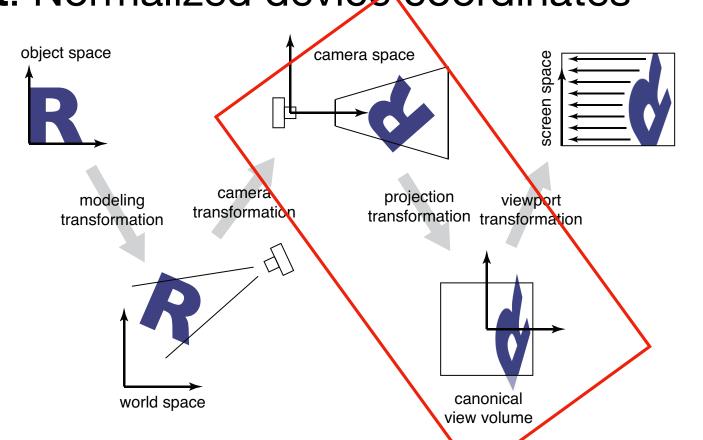
Parameters: Camera frame (u, v, w, e)

Output: Scene in camera coordinates



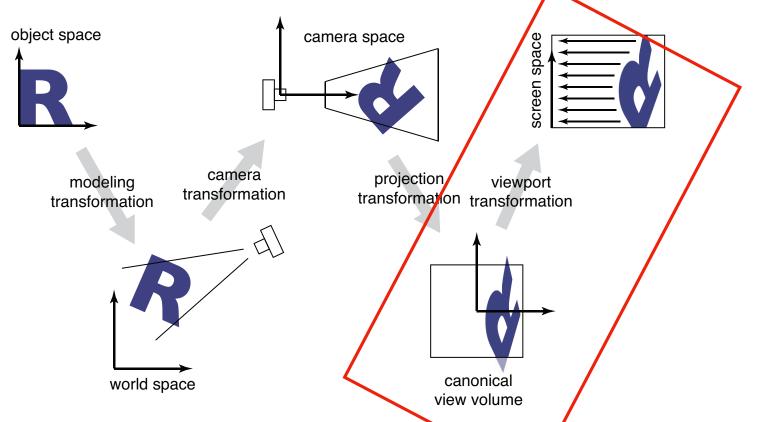
Projection Matrix - Orthographic

Input: Scene in (canonically-posed) camera coordinates **Parameters**: Orthographic viewport dimensions **Output**: Normalized device coordinates



Viewport Matrix

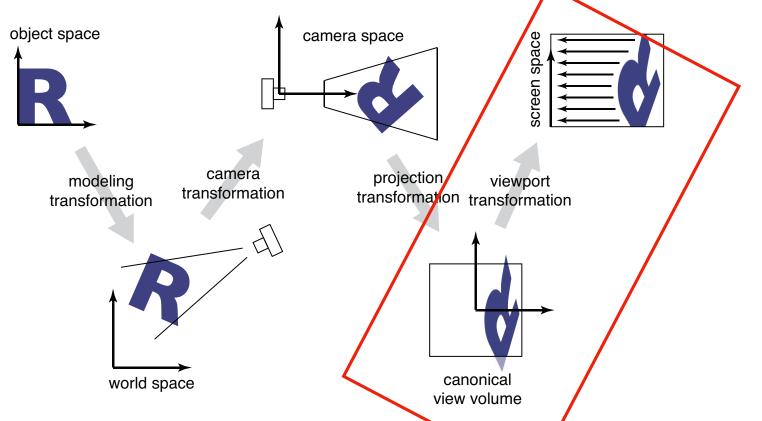
Input: Scene in the canonical view volumeParameters: W, H (image dimensions in pixels)Output: (x, y) in pixel coordinates; z unchanged



Let's build it

Viewport Matrix

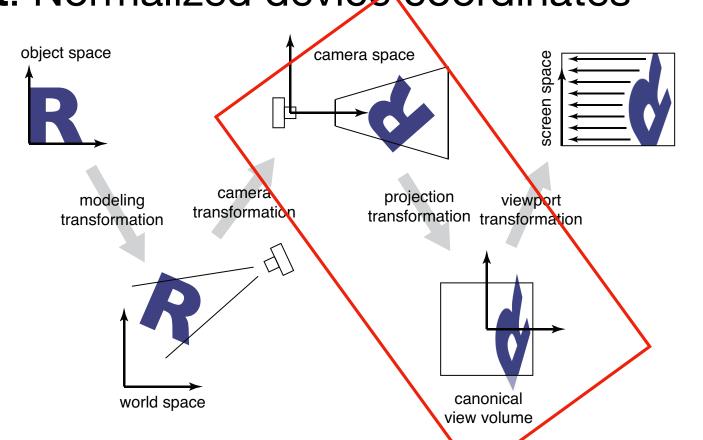
Input: Scene in the canonical view volume **Parameters**: W, H (image dimensions in pixels) **Output**: (x, y) in pixel coordinates; z unchanged



(j) $X_p = \left(\frac{X_{\nu}+1}{z}\right) + \frac{1}{z}$ (1) $y_{p=1}$ (1) $y_{p=1}$ $y_{P} = \left(\frac{-y_{1}+1}{2}\right)h + \frac{1}{2}$ Zp - Zv W (W+0.5) $\begin{array}{c} \chi_{P} \\ \chi_{P}$ $X_p = \frac{W_{X_v}}{2} + \frac{W_{+1}}{2}$ $y_{pz} - h y_{v} + h + 1 c$ $Z_{\rho} = Z_{v}$

Projection Matrix - Orthographic

Input: Scene in (canonically-posed) camera coordinates **Parameters**: Orthographic viewport dimensions **Output**: Normalized device coordinates



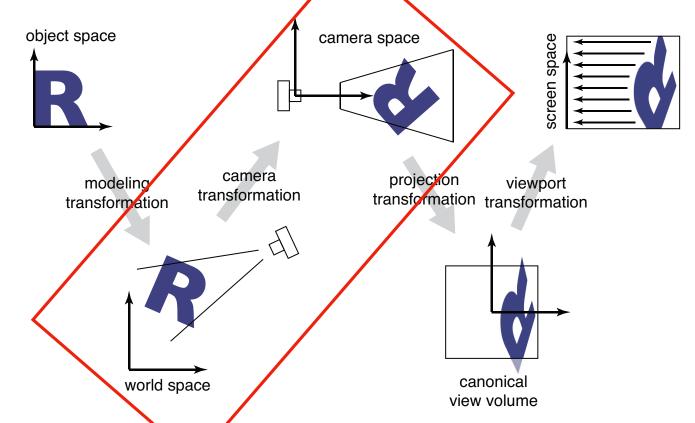
Given: (l, b, n) and (r, b, f)). Translate (l, b, n) to (0,0,0) 2. Scelc <u>r-l</u>, <u>t-b</u>, <u>n-f</u> -> (2,2,2) 3. Transtable (1,1,1) to (0,0,0)

Camera Matrix

Input: Scene in world coordinates

Parameters: Camera frame (u, v, w, e)

Output: Scene in camera coordinates

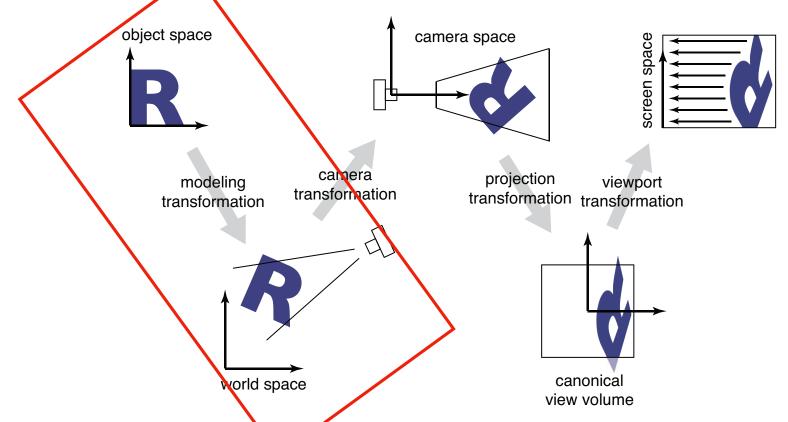


Model Matrix

Input: Scene in model coordinates

Parameters: Pose, scale, etc of model in scene

Output: Scene in world coordinates



What about perspective cameras?

 <u>https://www.cs.cornell.edu/courses/</u> <u>cs4620/2020fa/demos_cs4620/</u> <u>view_explore/view_explore.html</u>

Perspective Projection

Exercise:

Find y_s , the y coordinate of the point where (x, y, z) projects onto the viewport.

